A050613 Products of distinct terms of 1 and rest from A001566: a(n) = Product_{i=0..floor(log_2(n+1))} L(2^i)^bit(n,i).
1, 1, 3, 3, 7, 7, 21, 21, 47, 47, 141, 141, 329, 329, 987, 987, 2207, 2207, 6621, 6621, 15449, 15449, 46347, 46347, 103729, 103729, 311187, 311187, 726103, 726103, 2178309, 2178309, 4870847, 4870847, 14612541, 14612541, 34095929, 34095929
Offset: 0
Keywords
Links
- A. Karttunen, On Pascal's Triangle Modulo 2 in Fibonacci Representation, Fibonacci Quarterly, 42 (2004), 38-46.
Crossrefs
Bisection: A050614.
Programs
-
Maple
with(combinat); A050613 := n -> product('luc(2^i)^bit_i(n,i)','i'=0..floor_log_2(n+1)); luc := n -> (fibonacci(n-1)+fibonacci(n+1)); bit_i := (n,i) -> `mod`(floor(n/(2^i)),2); floor_log_2 := proc(n) local nn,i; nn := n; for i from -1 to n do if(0 = nn) then RETURN(i); fi; nn := floor(nn/2); od; end;
Comments