A050784 Palindromic primes containing no pair of consecutive equal digits.
2, 3, 5, 7, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601, 12421, 12721, 12821, 13831, 13931, 14341, 14741, 15451, 16061, 16361, 16561, 17471, 17971, 18181, 18481, 19391, 19891, 30103, 30203
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
nextL:= proc(L) local V,j,n,k; n:= LinearAlgebra:-Dimension(L); V:= L; for j from n to 1 by -1 do V[j]:= V[j]+1; if j > 1 then if V[j] = V[j-1] then V[j]:= V[j]+1 fi elif member(V[j],[2,8]) then V[j]:= V[j]+1 elif member(V[j],[4,5,6]) then V[j]:= 7 fi; if V[j] <= 9 then for k from j+1 to n do if (k-j)::odd then V[k]:= 0 else V[k]:= 1 fi od; return V fi; od; Vector(n+1, i -> i mod 2) end proc: Pali:= proc(L) local i,n; n:= LinearAlgebra:-Dimension(L); add(L[i]*10^(2*n-i-1),i=1..n)+add(L[i]*10^(i-1),i=1..n-1) end proc: V:= <5>: Res:= 2,3,5: count:= 3: while count < 100 do V:= nextL(V); x:= Pali(V); if isprime(x) then count:= count+1; Res:= Res, x fi; od: Res; # Robert Israel, Feb 07 2019
-
Mathematica
Select[Prime[Range[3280]],Reverse[x=IntegerDigits[#]]==x&&FreeQ[Differences[x],0]&] (* Jayanta Basu, Jun 01 2013 *)
Comments