cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050795 Numbers n such that n^2 - 1 is expressible as the sum of two nonzero squares in at least one way.

Original entry on oeis.org

3, 9, 17, 19, 33, 35, 51, 73, 81, 99, 105, 129, 145, 147, 161, 163, 179, 195, 201, 233, 243, 273, 289, 291, 297, 339, 361, 387, 393, 451, 465, 467, 483, 489, 513, 521, 577, 579, 585, 611, 627, 649, 675, 721, 723, 739, 777, 801, 809, 819, 849, 883, 899, 915
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Comments

Analogous solutions exist for the sum of two identical squares z^2-1 = 2.r^2 (e.g. 99^2-1 = 2.70^2). Values of 'z' are the terms in sequence A001541, values of 'r' are the terms in sequence A001542.
Looking at a^2 + b^2 = c^2 - 1 modulo 4, we must have a and b even and c odd. Taking a = 2u, b = 2v and c = 2w - 1 and simplifying, we get u^2 + v^2 = w(w+1). - Franklin T. Adams-Watters, May 19 2008
If n is in this sequence, then so is n^(2^k), for all k >= 0. - Altug Alkan, Apr 13 2016

Examples

			E.g. 51^2 - 1 = 10^2 + 50^2 = 22^2 + 46^2 = 34^2 + 38^2.
		

Crossrefs

Programs

  • Mathematica
    t={}; Do[i=c=1; While[iJayanta Basu, Jun 01 2013 *)
    Select[Range@ 1000, Length[PowersRepresentations[#^2 - 1, 2, 2] /. {0, } -> Nothing] > 0 &] (* _Michael De Vlieger, Apr 13 2016 *)
  • PARI
    select( {is_A050795(n)=#qfbsolve(Qfb(1,0,1),n^2-1,2)}, [1..999]) \\ M. F. Hasler, Mar 07 2022
  • Python
    from itertools import islice, count
    from sympy import factorint
    def A050795_gen(startvalue=2): # generator of terms >= startvalue
        for k in count(max(startvalue,2)):
            if all(map(lambda d: d[0] % 4 != 3 or d[1] % 2 == 0, factorint(k**2-1).items())):
                yield k
    A050795_list = list(islice(A050795_gen(),20)) # Chai Wah Wu, Mar 07 2022
    

Formula

a(n) = 2*A140612(n) + 1. - Franklin T. Adams-Watters, May 19 2008
{k : A025426(k^2-1)>0}. - R. J. Mathar, Mar 07 2022