cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050940 Numbers that are not the sum (of a nonempty sequence) of consecutive primes.

Original entry on oeis.org

0, 1, 4, 6, 9, 14, 16, 20, 21, 22, 25, 27, 32, 33, 34, 35, 38, 40, 44, 45, 46, 50, 51, 54, 55, 57, 62, 63, 64, 65, 66, 69, 70, 74, 76, 80, 81, 82, 85, 86, 87, 91, 92, 93, 94, 96, 99, 104, 105, 106, 108, 110, 111, 114, 115, 116, 117, 118, 122, 123, 125
Offset: 1

Views

Author

N. J. A. Sloane, Jan 02 2000

Keywords

Comments

Where is there a proof that this sequence is infinite? - Carlos Rivera, Apr 17 2002
Moser shows that the average order of A054845 is log(2), and hence this sequence is infinite with lower density at least 1 - log 2 = 0.306.... - Charles R Greathouse IV, Mar 21 2011

Examples

			The number 14 cannot be expressed as a sum of any consecutive subset of the following primes: {2, 3, 5, 7, 11, 13}.
		

Crossrefs

Complement of A034707.

Programs

  • BASIC
    10 N=1 20 N=N+1: if N=prmdiv(N) then goto 20 30 P=1 40 P=nxtprm(P):S=P:Q=P: if S>N\2 then print N;:goto 20 50 Q=nxtprm(Q):S=S+Q 60 if S=N then goto 20 70 if S>N then goto 40 80 goto 50
    
  • PARI
    is(n)=if(isprime(n), return(0)); my(v,m=1,t); while(1, v=vector(m++); v[m\2]=precprime(n\m); for(i=m\2+1,m,v[i]=nextprime(v[i-1]+1)); forstep(i=m\2-1,1,-1,v[i]=precprime(v[i+1]-1)); if(v[1]==0, return(1)); t=vecsum(v); if (t==n, return(0)); if(t>n, while(t>n, t-=v[m]; v=concat(precprime(v[1]-1), v[1..m-1]); t+=v[1]), while(tCharles R Greathouse IV, May 05 2016

Formula

A054845(a(n)) = 0. - Ray Chandler, Sep 20 2023