A050940 Numbers that are not the sum (of a nonempty sequence) of consecutive primes.
0, 1, 4, 6, 9, 14, 16, 20, 21, 22, 25, 27, 32, 33, 34, 35, 38, 40, 44, 45, 46, 50, 51, 54, 55, 57, 62, 63, 64, 65, 66, 69, 70, 74, 76, 80, 81, 82, 85, 86, 87, 91, 92, 93, 94, 96, 99, 104, 105, 106, 108, 110, 111, 114, 115, 116, 117, 118, 122, 123, 125
Offset: 1
Keywords
Examples
The number 14 cannot be expressed as a sum of any consecutive subset of the following primes: {2, 3, 5, 7, 11, 13}.
Links
- Franklin T. Adams-Watters, Table of n, a(n) for n = 1..10001
- Leo Moser, Notes on number theory. III. On the sum of consecutive primes, Canad. Math. Bull. 6 (1963), pp. 159-161.
Crossrefs
Complement of A034707.
Programs
-
BASIC
10 N=1 20 N=N+1: if N=prmdiv(N) then goto 20 30 P=1 40 P=nxtprm(P):S=P:Q=P: if S>N\2 then print N;:goto 20 50 Q=nxtprm(Q):S=S+Q 60 if S=N then goto 20 70 if S>N then goto 40 80 goto 50
-
PARI
is(n)=if(isprime(n), return(0)); my(v,m=1,t); while(1, v=vector(m++); v[m\2]=precprime(n\m); for(i=m\2+1,m,v[i]=nextprime(v[i-1]+1)); forstep(i=m\2-1,1,-1,v[i]=precprime(v[i+1]-1)); if(v[1]==0, return(1)); t=vecsum(v); if (t==n, return(0)); if(t>n, while(t>n, t-=v[m]; v=concat(precprime(v[1]-1), v[1..m-1]); t+=v[1]), while(t
Charles R Greathouse IV, May 05 2016
Formula
A054845(a(n)) = 0. - Ray Chandler, Sep 20 2023
Comments