A051084 Primes p such that x^30 = -2 has a solution mod p.
2, 3, 17, 43, 59, 83, 89, 107, 113, 137, 179, 227, 233, 251, 257, 283, 307, 347, 353, 419, 433, 443, 449, 457, 467, 499, 563, 569, 587, 593, 617, 641, 643, 659, 683, 739, 809, 827, 857, 929, 947, 953, 971, 977, 1019, 1049, 1097, 1163, 1187, 1193, 1217, 1259, 1283, 1289, 1307, 1409
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(1410) | exists(t){x : x in ResidueClassRing(p) | x^30 eq - 2}]; // Vincenzo Librandi, Sep 15 2012
-
Mathematica
ok[p_]:= Reduce[Mod[x^30 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[500]], ok] (* Vincenzo Librandi, Sep 15 2012 *)
-
PARI
/* see A051071 */
Extensions
More terms from Joerg Arndt, Jul 27 2011
Comments