A051101 Primes p such that x^64 = -2 has a solution mod p.
2, 3, 11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251, 281, 283, 307, 331, 347, 379, 419, 443, 467, 491, 499, 523, 547, 563, 571, 587, 617, 619, 643, 659, 683, 691, 739, 787, 811, 827, 859, 883, 907, 947, 971, 1019, 1033, 1049, 1051, 1091, 1097, 1123, 1163, 1171, 1187
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(1200) | exists(t){x : x in ResidueClassRing(p) | x^64 eq - 2}]; // Vincenzo Librandi, Sep 16 2012
-
Mathematica
ok[p_]:= Reduce[Mod[x^64 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[400]], ok] (* Vincenzo Librandi, Sep 16 2012 *)
-
PARI
forprime(p=2, 2000, if([]~!=polrootsmod(x^64+2, p), print1(p, ", "))); print(); /* Joerg Arndt, Jun 24 2012 */
Extensions
More terms from Joerg Arndt, Jul 27 2011
Comments