A051141 Triangle read by rows: a(n, m) = S1(n, m)*3^(n-m), where S1 are the signed Stirling numbers of first kind A008275 (n >= 1, 1 <= m <= n).
1, -3, 1, 18, -9, 1, -162, 99, -18, 1, 1944, -1350, 315, -30, 1, -29160, 22194, -6075, 765, -45, 1, 524880, -428652, 131544, -19845, 1575, -63, 1, -11022480, 9526572, -3191076, 548289, -52920, 2898, -84, 1, 264539520, -239660208
Offset: 1
Examples
Triangle starts: 1; -3, 1; 18, -9, 1; -162, 99, -18, 1; 1944, -1350, 315, -30, 1; -29160, 22194, -6075, 765, -45, 1; 524880, -428652, 131544, -19845, 1575, -63, 1; --- Row polynomial E(3,x) = 18*x-9*x^2+x^3. From _Paul Barry_, Apr 29 2009: (Start) The unsigned array [1/(1 - 3*x), log(1/(1 - 3*x)^(1/3))] has production matrix 3, 1; 9, 6, 1; 27, 27, 9, 1; 81, 108, 54, 12, 1; 243, 405, 270, 90, 15, 1; 729, 1458, 1215, 540, 135, 18, 1; ... which is A007318^{3} beheaded (by viewing A007318 as a lower triangular matrix). See the comment above. (End)
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales, Two Approaches to Normal Order Coefficients, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
- Wolfdieter Lang, First 10 rows.
- D. S. Mitrinovic and M. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 77 (1962), 1-77.
Crossrefs
Programs
-
Mathematica
a[n_, m_] /; n >= m >= 1 := a[n, m] = a[n-1, m-1] - 3(n-1)*a[n-1, m]; a[n_, m_] /; n < m = 0; a[, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]][[1 ;; 38]] (* _Jean-François Alcover, Jun 01 2011, after formula *) Table[StirlingS1[n, m]*3^(n - m), {n, 1, 10}, {m, 1, n}]//Flatten (* G. C. Greubel, Oct 24 2017 *)
-
PARI
for(n=1,10, for(m=1,n, print1(stirling(n,m,1)*3^(n-m), ", "))) \\ G. C. Greubel, Oct 24 2017
-
Sage
# uses[bell_transform from A264428] triplefactorial = lambda n: 3^n*factorial(n) def A051141_row(n): trifact = [triplefactorial(k) for k in (0..n)] return bell_transform(n, trifact) [A051141_row(n) for n in (0..8)] # Peter Luschny, Dec 21 2015
Formula
a(n, m) = a(n-1, m-1) - 3*(n-1)*a(n-1, m) for n >= m >= 1; a(n, m) = 0 for n < m; a(n, 0) = 0 for n >= 1; a(0, 0) = 1.
E.g.f. for the m-th column of the signed triangle: (log(1 + 3*x)/3)^m/m!.
|a(n,1)| = A032031(n-1). - Peter Luschny, Dec 23 2015
Extensions
Name clarified using a formula of the author by Peter Luschny, Dec 23 2015
Comments