A051142 Generalized Stirling number triangle of first kind.
1, -4, 1, 32, -12, 1, -384, 176, -24, 1, 6144, -3200, 560, -40, 1, -122880, 70144, -14400, 1360, -60, 1, 2949120, -1806336, 415744, -47040, 2800, -84, 1, -82575360, 53526528, -13447168, 1732864, -125440, 5152, -112, 1, 2642411520, -1795424256, 483835904
Offset: 1
Examples
Triangle a(n,m) (with rows n >= 1 and columns m = 1..n) begins: 1; -4, 1; 32, -12, 1; -384, 176, -24, 1; 6144, -3200, 560, -40, 1, -122880, 70144, -14400, 1360, -60, 1; ... 3rd row o.g.f.: E(3,x) = 32*x - 12*x^2 + x^3.
Links
- Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales, Two Approaches to Normal Order Coefficients, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
- Wolfdieter Lang, First 10 rows.
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356.
- D. S. Mitrinovic and M. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77 [jstor stable version].
Crossrefs
Programs
-
Mathematica
Table[StirlingS1[n, m] 4^(n - m), {n, 9}, {m, n}] // Flatten (* Michael De Vlieger, Dec 31 2015 *)
-
Sage
# uses[bell_transform from A264428] # Unsigned values and an additional first column (1,0,0,0, ...). def A051142_row(n): multifact_4_4 = lambda n: prod(4*k + 4 for k in (0..n-1)) mfact = [multifact_4_4(k) for k in (0..n)] return bell_transform(n, mfact) [A051142_row(n) for n in (0..9)] # Peter Luschny, Dec 31 2015
Formula
a(n, m) = a(n-1, m-1) - 4*(n-1)*a(n-1, m) for n >= m >= 1; a(n, m) := 0 for n < m; a(n, 0) := 0 for n >= 1; a(0, 0) = 1.
E.g.f. for the m-th column of the signed triangle: (log(1 + 4*x)/4)^m/m!.
a(n, m) = S1(n, m)*4^(n-m), with S1(n, m) := A008275(n, m) (signed Stirling1 triangle).
Comments