1, 5, 1, 45, 15, 1, 585, 255, 30, 1, 9945, 5175, 825, 50, 1, 208845, 123795, 24150, 2025, 75, 1, 5221125, 3427515, 775845, 80850, 4200, 105, 1, 151412625, 108046575, 27478710, 3363045, 219450, 7770, 140, 1, 4996616625, 3824996175, 1069801425
Offset: 1
Triangle starts:
{1};
{5,1};
{45,15,1};
{585,255,30,1};
{9945,5175,825,50,1};
...
A039683
Signed double Pochhammer triangle: expansion of x(x-2)(x-4)..(x-2n+2).
Original entry on oeis.org
1, -2, 1, 8, -6, 1, -48, 44, -12, 1, 384, -400, 140, -20, 1, -3840, 4384, -1800, 340, -30, 1, 46080, -56448, 25984, -5880, 700, -42, 1, -645120, 836352, -420224, 108304, -15680, 1288, -56, 1, 10321920, -14026752, 7559936, -2153088, 359184, -36288, 2184, -72, 1
Offset: 1
Triangle starts:
{1},
{2,1},
{8,6,1},
{48,44,12,1},
...
From _Paul Barry_, Apr 29 2009: (Start)
The unsigned triangle [1/(1-2x),log(1/sqrt(1-2x))] has production matrix:
2, 1,
4, 4, 1,
8, 12, 6, 1,
16, 32, 24, 8, 1,
32, 80, 80, 40, 10, 1,
64, 192, 240, 160, 60, 12, 1
which is A007318^{2} beheaded. (End)
- Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales. Two Approaches to Normal Order Coefficients, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
- Tom Copeland, Addendum to Mathemagical Forests.
- P. Feijão, F. V. Martinez, and A. Thévenin, On the distribution of cycles and paths in multichromosomal breakpoint graphs and the expected value of rearrangement distance, BMC Bioinformatics 16:Suppl19 (2015), S1. doi:10.1186/1471-2105-16-S19-S1
- Lisa Glaser, Causal set actions in various dimensions, J. Phys.: Conf. Ser. 306 (2011), 012041.
- Wolfdieter Lang, First 9 rows and comment.
- Peter Luschny, The Bell transform
- D. S. Mitrinovic and M. S. Mitrinovic, Tableaux d'une classe de nombres relies aux nombres de Stirling, Univ. Beograd. Pubi. Elektrotehn. Fak. Ser. Mat. Fiz. 77 (1962).
First column (unsigned triangle) is (2(n-1))!! = 1, 2, 8, 48, 384...=
A000165(n-1) and the row sums (unsigned) are (2n-1)!! = 1, 3, 15, 105, 945... =
A001147(n-1).
-
Table[ Rest@ CoefficientList[ Product[ z-k, {k, 0, 2p-2, 2} ], z ], {p, 6} ]
-
# uses[bell_transform from A264428]
# Unsigned values and an additional first column (1,0,0,...).
def A039683_unsigned_row(n):
a = sloane.A000165
dblfact = a.list(n)
return bell_transform(n, dblfact)
[A039683_unsigned_row(n) for n in (0..9)] # Peter Luschny, Dec 20 2015
A051141
Triangle read by rows: a(n, m) = S1(n, m)*3^(n-m), where S1 are the signed Stirling numbers of first kind A008275 (n >= 1, 1 <= m <= n).
Original entry on oeis.org
1, -3, 1, 18, -9, 1, -162, 99, -18, 1, 1944, -1350, 315, -30, 1, -29160, 22194, -6075, 765, -45, 1, 524880, -428652, 131544, -19845, 1575, -63, 1, -11022480, 9526572, -3191076, 548289, -52920, 2898, -84, 1, 264539520, -239660208
Offset: 1
Triangle starts:
1;
-3, 1;
18, -9, 1;
-162, 99, -18, 1;
1944, -1350, 315, -30, 1;
-29160, 22194, -6075, 765, -45, 1;
524880, -428652, 131544, -19845, 1575, -63, 1;
---
Row polynomial E(3,x) = 18*x-9*x^2+x^3.
From _Paul Barry_, Apr 29 2009: (Start)
The unsigned array [1/(1 - 3*x), log(1/(1 - 3*x)^(1/3))] has production matrix
3, 1;
9, 6, 1;
27, 27, 9, 1;
81, 108, 54, 12, 1;
243, 405, 270, 90, 15, 1;
729, 1458, 1215, 540, 135, 18, 1;
...
which is A007318^{3} beheaded (by viewing A007318 as a lower triangular matrix). See the comment above. (End)
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales, Two Approaches to Normal Order Coefficients, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
- Wolfdieter Lang, First 10 rows.
- D. S. Mitrinovic and M. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 77 (1962), 1-77.
First (m=1) column sequence is:
A032031(n-1).
Row sums (signed triangle):
A008544(n-1)*(-1)^(n-1).
Row sums (unsigned triangle):
A007559(n).
-
a[n_, m_] /; n >= m >= 1 := a[n, m] = a[n-1, m-1] - 3(n-1)*a[n-1, m]; a[n_, m_] /; n < m = 0; a[, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]][[1 ;; 38]] (* _Jean-François Alcover, Jun 01 2011, after formula *)
Table[StirlingS1[n, m]*3^(n - m), {n, 1, 10}, {m, 1, n}]//Flatten (* G. C. Greubel, Oct 24 2017 *)
-
for(n=1,10, for(m=1,n, print1(stirling(n,m,1)*3^(n-m), ", "))) \\ G. C. Greubel, Oct 24 2017
-
# uses[bell_transform from A264428]
triplefactorial = lambda n: 3^n*factorial(n)
def A051141_row(n):
trifact = [triplefactorial(k) for k in (0..n)]
return bell_transform(n, trifact)
[A051141_row(n) for n in (0..8)] # Peter Luschny, Dec 21 2015
Name clarified using a formula of the author by
Peter Luschny, Dec 23 2015
A051150
Generalized Stirling number triangle of first kind.
Original entry on oeis.org
1, -5, 1, 50, -15, 1, -750, 275, -30, 1, 15000, -6250, 875, -50, 1, -375000, 171250, -28125, 2125, -75, 1, 11250000, -5512500, 1015000, -91875, 4375, -105, 1, -393750000, 204187500, -41037500, 4230625
Offset: 1
Triangle a(n,m) (with rows n >= 1 and columns m = 1..n) begins:
1;
-5, 1;
50, -15, 1;
-750, 275, -30, 1;
15000, -6250, 875, -50, 1;
-375000, 171250, -28125, 2125, -75, 1;
...
3rd row o.g.f.: E(3,x) = 50*x - 15*x^2 + x^3.
- Wolfdieter Lang, First 10 rows.
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356. [The numbers R_n^m(a,b) are first introduced.]
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77. [Special cases of the numbers R_n^m(a,b) are tabulated.]
First (m=1) column sequence:
A052562(n-1).
Row sums (signed triangle):
A008546(n-1)*(-1)^(n-1).
Row sums (unsigned triangle):
A008548(n).
A051151
Generalized Stirling number triangle of first kind.
Original entry on oeis.org
1, -6, 1, 72, -18, 1, -1296, 396, -36, 1, 31104, -10800, 1260, -60, 1, -933120, 355104, -48600, 3060, -90, 1, 33592320, -13716864, 2104704, -158760, 6300, -126, 1, -1410877440, 609700608, -102114432, 8772624, -423360, 11592, -168
Offset: 1
Triangle a(n,m) (with rows n >= 1 and columns m = 1..n) begins:
1;
-6, 1;
72, -18, 1;
-1296, 396, -36, 1;
31104, -10800, 1260, -60, 1;
-933120, 355104, -48600, 3060, -90, 1;
...
3rd row o.g.f.: E(3,x) = 72*x - 18*x^2 + x^3.
- Wolfdieter Lang, First 10 rows.
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356. [The numbers R_n^m(a,b) are first introduced.]
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77. [Special cases of the numbers R_n^m(a,b) are tabulated.]
First (m=1) column sequence is:
A047058(n-1).
Row sums (signed triangle):
A008543(n-1)*(-1)^(n-1).
Row sums (unsigned triangle):
A008542(n).
A051186
Generalized Stirling number triangle of first kind.
Original entry on oeis.org
1, -7, 1, 98, -21, 1, -2058, 539, -42, 1, 57624, -17150, 1715, -70, 1, -2016840, 657874, -77175, 4165, -105, 1, 84707280, -29647548, 3899224, -252105, 8575, -147, 1, -4150656720, 1537437132, -220709524, 16252369, -672280, 15778, -196, 1
Offset: 1
Triangle T(n,m) (with rows n >= 1 and columns m = 1..n) begins:
1;
-7, 1;
98, -21, 1;
-2058, 539, -42, 1;
57624, -17150, 1715, -70, 1;
-2016840, 657874, -77175, 4165, -105, 1;
...
3rd row o.g.f.: E(3,x) = Product_{j=0..2} (x - 7*j) = 98*x - 21*x^2 + x^3.
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- Wolfdieter Lang, First ten rows.
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur les nombres de Stirling et les nombres de Bernoulli d'ordre supérieur, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 43 (1960), 1-63.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur une classe de nombres se rattachant aux nombres de Stirling--Appendice: Table des nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 60 (1961), 1-15 and 17-62.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77 [jstor stable version].
-
[7^(n-k)*StirlingFirst(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 22 2022
-
Table[7^(n-k)*StirlingS1[n, k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Feb 22 2022 *)
-
flatten([[(-7)^(n-k)*stirling_number1(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 22 2022
A051187
Generalized Stirling number triangle of the first kind.
Original entry on oeis.org
1, -8, 1, 128, -24, 1, -3072, 704, -48, 1, 98304, -25600, 2240, -80, 1, -3932160, 1122304, -115200, 5440, -120, 1, 188743680, -57802752, 6651904, -376320, 11200, -168, 1, -10569646080, 3425697792, -430309376, 27725824, -1003520, 20608, -224, 1
Offset: 1
Triangle T(n,m) (with rows n >= 1 and columns m = 1..n) begins:
1;
-8, 1;
128, -24, 1;
-3072, 704, -48, 1;
98304, -25600, 2240, -80, 1;
-3932160, 1122304, -115200, 5440, -120, 1;
188743680, -57802752, 6651904, -376320, 11200, -168, 1;
...
3rd row o.g.f.: E(3,x) = Product_{j=0..2} (x - 8*j) = 128*x - 24*x^2 + x^3.
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur les polynômes de Stirling, Bulletin de la Société des mathématiciens et physiciens de la R. P. de Serbie, t. 10 (1958), 43-49.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur les nombres de Stirling et les nombres de Bernoulli d'ordre supérieur, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 43 (1960), 1-63.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur une classe de nombres se rattachant aux nombres de Stirling--Appendice: Table des nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 60 (1961), 1-15 and 17-62.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77 [jstor stable version].
- Niels Nörlund, Vorlesungen über Differenzenrechnung, Springer, Berlin, 1924.
First (m=1) column sequence is:
A051189(n-1).
Row sums (signed triangle):
A049210(n-1)*(-1)^(n-1).
Row sums (unsigned triangle):
A045755(n).
Showing 1-10 of 11 results.
Next
Comments