1, 7, 1, 91, 21, 1, 1729, 511, 42, 1, 43225, 15015, 1645, 70, 1, 1339975, 523705, 69300, 4025, 105, 1, 49579075, 21240765, 3226405, 230300, 8330, 147, 1, 2131900225, 984172735, 166428990, 13820205, 621810, 15386, 196, 1, 104463111025
Offset: 1
{1}; {7,1}; {91,21,1}; {1729,511,42,1}; ...
A008543
Sextuple factorial numbers: Product_{k=0..n-1} (6*k + 5).
Original entry on oeis.org
1, 5, 55, 935, 21505, 623645, 21827575, 894930575, 42061737025, 2229272062325, 131527051677175, 8549258359016375, 606997343490162625, 46738795448742522125, 3879320022245629336375, 345259481979861010937375, 32799650788086796039050625, 3312764729596766399944113125
Offset: 0
Joe Keane (jgk(AT)jgk.org)
a(n) =
A013988(n+1, 1) (first column of triangle).
-
[Round(6^n*Gamma(n+5/6)/Gamma(5/6)): n in [0..20]]; // G. C. Greubel, Dec 03 2019
-
f := n->product( (6*k-1),k=0..n);
-
FoldList[Times,1,6Range[0,15]+5] (* Harvey P. Dale, Feb 20 2011 *)
Table[6^n*Pochhammer[5/6, n], {n, 0, 20}] (* G. C. Greubel, Dec 03 2019 *)
CoefficientList[Series[(1 - 6x)^(-5/6), {x, 0, 20}], x] Range[0, 20]! (* Nikolaos Pantelidis, Jan 31 2023 *)
-
a(n)=prod(k=1,n,6*k-1) \\ Charles R Greathouse IV, Aug 17 2011
-
[6^n*rising_factorial(5/6, n) for n in (0..20)] # G. C. Greubel, Dec 03 2019
A047058
a(n) = 6^n * n!.
Original entry on oeis.org
1, 6, 72, 1296, 31104, 933120, 33592320, 1410877440, 67722117120, 3656994324480, 219419659468800, 14481697524940800, 1042682221795737600, 81329213300067532800, 6831653917205672755200, 614848852548510547968000
Offset: 0
Joe Keane (jgk(AT)jgk.org)
A051186
Generalized Stirling number triangle of first kind.
Original entry on oeis.org
1, -7, 1, 98, -21, 1, -2058, 539, -42, 1, 57624, -17150, 1715, -70, 1, -2016840, 657874, -77175, 4165, -105, 1, 84707280, -29647548, 3899224, -252105, 8575, -147, 1, -4150656720, 1537437132, -220709524, 16252369, -672280, 15778, -196, 1
Offset: 1
Triangle T(n,m) (with rows n >= 1 and columns m = 1..n) begins:
1;
-7, 1;
98, -21, 1;
-2058, 539, -42, 1;
57624, -17150, 1715, -70, 1;
-2016840, 657874, -77175, 4165, -105, 1;
...
3rd row o.g.f.: E(3,x) = Product_{j=0..2} (x - 7*j) = 98*x - 21*x^2 + x^3.
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- Wolfdieter Lang, First ten rows.
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur les nombres de Stirling et les nombres de Bernoulli d'ordre supérieur, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 43 (1960), 1-63.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur une classe de nombres se rattachant aux nombres de Stirling--Appendice: Table des nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 60 (1961), 1-15 and 17-62.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77 [jstor stable version].
-
[7^(n-k)*StirlingFirst(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 22 2022
-
Table[7^(n-k)*StirlingS1[n, k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Feb 22 2022 *)
-
flatten([[(-7)^(n-k)*stirling_number1(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 22 2022
A051187
Generalized Stirling number triangle of the first kind.
Original entry on oeis.org
1, -8, 1, 128, -24, 1, -3072, 704, -48, 1, 98304, -25600, 2240, -80, 1, -3932160, 1122304, -115200, 5440, -120, 1, 188743680, -57802752, 6651904, -376320, 11200, -168, 1, -10569646080, 3425697792, -430309376, 27725824, -1003520, 20608, -224, 1
Offset: 1
Triangle T(n,m) (with rows n >= 1 and columns m = 1..n) begins:
1;
-8, 1;
128, -24, 1;
-3072, 704, -48, 1;
98304, -25600, 2240, -80, 1;
-3932160, 1122304, -115200, 5440, -120, 1;
188743680, -57802752, 6651904, -376320, 11200, -168, 1;
...
3rd row o.g.f.: E(3,x) = Product_{j=0..2} (x - 8*j) = 128*x - 24*x^2 + x^3.
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur les polynômes de Stirling, Bulletin de la Société des mathématiciens et physiciens de la R. P. de Serbie, t. 10 (1958), 43-49.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur les nombres de Stirling et les nombres de Bernoulli d'ordre supérieur, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 43 (1960), 1-63.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur une classe de nombres se rattachant aux nombres de Stirling--Appendice: Table des nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 60 (1961), 1-15 and 17-62.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77 [jstor stable version].
- Niels Nörlund, Vorlesungen über Differenzenrechnung, Springer, Berlin, 1924.
First (m=1) column sequence is:
A051189(n-1).
Row sums (signed triangle):
A049210(n-1)*(-1)^(n-1).
Row sums (unsigned triangle):
A045755(n).
Comments