1, 6, 1, 66, 18, 1, 1056, 372, 36, 1, 22176, 9240, 1200, 60, 1, 576576, 271656, 42840, 2940, 90, 1, 17873856, 9269568, 1685376, 142800, 6090, 126, 1, 643458816, 360847872, 73313856, 7254576, 386400, 11256, 168, 1, 26381811456, 15799069440
Offset: 1
Triangle begins:
{1};
{6,1};
{66,18,1};
{1056,372,36,1};
...
A008546
Quintuple factorial numbers: Product_{k = 0..n-1} (5*k + 4).
Original entry on oeis.org
1, 4, 36, 504, 9576, 229824, 6664896, 226606464, 8837652096, 388856692224, 19053977918976, 1028914807624704, 60705973649857536, 3885182313590882304, 268077579637770878976, 19837740893195045044224, 1567181530562408558493696, 131643248567242318913470464
Offset: 0
Joe Keane (jgk(AT)jgk.org)
-
List([0..20], n-> Product([0..n-1], k-> 5*k+4 )); # G. C. Greubel, Aug 20 2019
-
[1] cat [(&*[5*k+4: k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 20 2019
-
f:= n-> product(5*k+4, k=0..n-1);
-
FoldList[Times, 1, 5Range[0, 20] + 4] (* Vincenzo Librandi, Jun 10 2013 *)
CoefficientList[Series[(1 - 5x)^(-4/5), {x, 0, 20}], x] Range[0, 20]! (* Vaclav Kotesovec, Jan 28 2015 *)
Table[5^n Pochhammer[4/5, n], {n, 0, 20}] (* G. C. Greubel, Aug 20 2019 *)
-
vector(20, n, n--; prod(j=0,n-1, 5*j+4) ) \\ G. C. Greubel, Aug 20 2019
-
[5^n*rising_factorial(4/5, n) for n in (0..20)] # G. C. Greubel, Aug 20 2019
A052562
a(n) = 5^n * n!.
Original entry on oeis.org
1, 5, 50, 750, 15000, 375000, 11250000, 393750000, 15750000000, 708750000000, 35437500000000, 1949062500000000, 116943750000000000, 7601343750000000000, 532094062500000000000, 39907054687500000000000
Offset: 0
Joe Keane (jgk(AT)jgk.org)
-
[5^n*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 05 2011
-
spec := [S,{S=Sequence(Union(Z,Z,Z,Z,Z))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
with(combstruct):A:=[N,{N=Cycle(Union(Z$5))},labeled]: seq(count(A,size=n)/5,n=1..16); # Zerinvary Lajos, Dec 05 2007
-
Table[5^n*n!, {n, 0, 20}] (* Wesley Ivan Hurt, Sep 28 2013 *)
-
{a(n) = 5^n*n!}; \\ G. C. Greubel, May 05 2019
-
[5^n*factorial(n) for n in (0..20)] # G. C. Greubel, May 05 2019
A051151
Generalized Stirling number triangle of first kind.
Original entry on oeis.org
1, -6, 1, 72, -18, 1, -1296, 396, -36, 1, 31104, -10800, 1260, -60, 1, -933120, 355104, -48600, 3060, -90, 1, 33592320, -13716864, 2104704, -158760, 6300, -126, 1, -1410877440, 609700608, -102114432, 8772624, -423360, 11592, -168
Offset: 1
Triangle a(n,m) (with rows n >= 1 and columns m = 1..n) begins:
1;
-6, 1;
72, -18, 1;
-1296, 396, -36, 1;
31104, -10800, 1260, -60, 1;
-933120, 355104, -48600, 3060, -90, 1;
...
3rd row o.g.f.: E(3,x) = 72*x - 18*x^2 + x^3.
- Wolfdieter Lang, First 10 rows.
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356. [The numbers R_n^m(a,b) are first introduced.]
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77. [Special cases of the numbers R_n^m(a,b) are tabulated.]
First (m=1) column sequence is:
A047058(n-1).
Row sums (signed triangle):
A008543(n-1)*(-1)^(n-1).
Row sums (unsigned triangle):
A008542(n).
A051186
Generalized Stirling number triangle of first kind.
Original entry on oeis.org
1, -7, 1, 98, -21, 1, -2058, 539, -42, 1, 57624, -17150, 1715, -70, 1, -2016840, 657874, -77175, 4165, -105, 1, 84707280, -29647548, 3899224, -252105, 8575, -147, 1, -4150656720, 1537437132, -220709524, 16252369, -672280, 15778, -196, 1
Offset: 1
Triangle T(n,m) (with rows n >= 1 and columns m = 1..n) begins:
1;
-7, 1;
98, -21, 1;
-2058, 539, -42, 1;
57624, -17150, 1715, -70, 1;
-2016840, 657874, -77175, 4165, -105, 1;
...
3rd row o.g.f.: E(3,x) = Product_{j=0..2} (x - 7*j) = 98*x - 21*x^2 + x^3.
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- Wolfdieter Lang, First ten rows.
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur les nombres de Stirling et les nombres de Bernoulli d'ordre supérieur, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 43 (1960), 1-63.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur une classe de nombres se rattachant aux nombres de Stirling--Appendice: Table des nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 60 (1961), 1-15 and 17-62.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77 [jstor stable version].
-
[7^(n-k)*StirlingFirst(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 22 2022
-
Table[7^(n-k)*StirlingS1[n, k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Feb 22 2022 *)
-
flatten([[(-7)^(n-k)*stirling_number1(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 22 2022
A051187
Generalized Stirling number triangle of the first kind.
Original entry on oeis.org
1, -8, 1, 128, -24, 1, -3072, 704, -48, 1, 98304, -25600, 2240, -80, 1, -3932160, 1122304, -115200, 5440, -120, 1, 188743680, -57802752, 6651904, -376320, 11200, -168, 1, -10569646080, 3425697792, -430309376, 27725824, -1003520, 20608, -224, 1
Offset: 1
Triangle T(n,m) (with rows n >= 1 and columns m = 1..n) begins:
1;
-8, 1;
128, -24, 1;
-3072, 704, -48, 1;
98304, -25600, 2240, -80, 1;
-3932160, 1122304, -115200, 5440, -120, 1;
188743680, -57802752, 6651904, -376320, 11200, -168, 1;
...
3rd row o.g.f.: E(3,x) = Product_{j=0..2} (x - 8*j) = 128*x - 24*x^2 + x^3.
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur les polynômes de Stirling, Bulletin de la Société des mathématiciens et physiciens de la R. P. de Serbie, t. 10 (1958), 43-49.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur les nombres de Stirling et les nombres de Bernoulli d'ordre supérieur, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 43 (1960), 1-63.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur une classe de nombres se rattachant aux nombres de Stirling--Appendice: Table des nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 60 (1961), 1-15 and 17-62.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77 [jstor stable version].
- Niels Nörlund, Vorlesungen über Differenzenrechnung, Springer, Berlin, 1924.
First (m=1) column sequence is:
A051189(n-1).
Row sums (signed triangle):
A049210(n-1)*(-1)^(n-1).
Row sums (unsigned triangle):
A045755(n).
Comments