Original entry on oeis.org
1, 7, 85, 1465, 32677, 894103, 28977817, 1085272945, 46112305897, 2191384887175, 115164935076445, 6631403822046697, 415179375712149517, 28079663069162365207, 2040146099677929685345, 158473205735310372796897, 13105410949812720002967889, 1149574078597445578977405319
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..360
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Cf. Generalized Bell numbers B(m, 1, n):
A049118 (m=3),
A049119 (m=4),
A049120 (m=5), this sequence (m=6).
A008548
Quintuple factorial numbers: Product_{k=0..n-1} (5*k+1).
Original entry on oeis.org
1, 1, 6, 66, 1056, 22176, 576576, 17873856, 643458816, 26381811456, 1213563326976, 61891729675776, 3465936861843456, 211422148572450816, 13953861805781753856, 990724188210504523776, 75295038303998343806976, 6098898102623865848365056, 524505236825652462959394816
Offset: 0
Joe Keane (jgk(AT)jgk.org)
- Vincenzo Librandi, Table of n, a(n) for n = 0..300 (first 50 terms from T. D. Noe)
- Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), Article 00.2.4.
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014-2020.
- Maxie D. Schmidt, Generalized j-Factorial Functions, Polynomials, and Applications , J. Int. Seq. 13 (2010), Article 10.6.7, Table 6.3.
-
List([0..20], n-> Product([0..n], k-> 5*k+1)); # G. C. Greubel, Aug 16 2019
-
[(&*[5*k+1: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 16 2019
-
a := n -> mul(5*k+1, k=0..n-1);
G(x):=(1-5*x)^(-1/5): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..16); # Zerinvary Lajos, Apr 03 2009
H := hypergeom([1, 1/5], [], 5*x):
seq(coeff(series(H,x,20),x,n),n=0..16); # Peter Luschny, Oct 08 2015
-
Table[Product[5k+1,{k,0,n-1}],{n,0,20}] (* Harvey P. Dale, Apr 23 2011 *)
FoldList[Times,1,NestList[#+5&,1,20]] (* Ray Chandler, Apr 23 2011 *)
FoldList[Times,1,5Range[0, 25] + 1] (* Vincenzo Librandi, Jun 10 2013 *)
-
x='x+O('x^33); Vec(serlaplace((1-5*x)^(-1/5))) \\ Joerg Arndt, Apr 24 2011
-
vector(20, n, n--; prod(k=0, n-1, 5*k+1)) \\ Altug Alkan, Oct 08 2015
-
[product(5*k+1 for k in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 16 2019
A105278
Triangle read by rows: T(n,k) = binomial(n,k)*(n-1)!/(k-1)!.
Original entry on oeis.org
1, 2, 1, 6, 6, 1, 24, 36, 12, 1, 120, 240, 120, 20, 1, 720, 1800, 1200, 300, 30, 1, 5040, 15120, 12600, 4200, 630, 42, 1, 40320, 141120, 141120, 58800, 11760, 1176, 56, 1, 362880, 1451520, 1693440, 846720, 211680, 28224, 2016, 72, 1, 3628800, 16329600
Offset: 1
T(1,1) = C(1,1)*0!/0! = 1,
T(2,1) = C(2,1)*1!/0! = 2,
T(2,2) = C(2,2)*1!/1! = 1,
T(3,1) = C(3,1)*2!/0! = 6,
T(3,2) = C(3,2)*2!/1! = 6,
T(3,3) = C(3,3)*2!/2! = 1,
Sheffer a-sequence recurrence: T(6,2)= 1800 = (6/3)*120 + 6*240.
B(n,k) =
1/(1-x)^2;
2/(1-x)^3, 1/(1-x)^4;
6/(1-x)^4, 6/(1-x)^5, 1/(1-x)^6;
24/(1-x)^5, 36/(1-x)^6, 12/(1-x)^7, 1/(1-x)^8;
The triangle T(n,k) begins:
n\k 1 2 3 4 5 6 7 8 9 ...
1: 1
2: 2 1
3: 6 6 1
4: 24 36 12 1
5: 120 240 120 20 1
6: 720 1800 1200 300 30 1
7: 5040 15120 12600 4200 630 42 1
8: 40320 141120 141120 58800 11760 1176 56 1
9: 362880 1451520 1693440 846720 211680 28224 2016 72 1
...
Row n=10: [3628800, 16329600, 21772800, 12700800, 3810240, 635040, 60480, 3240, 90, 1]. - _Wolfdieter Lang_, Feb 01 2013
From _Peter Bala_, Feb 24 2025: (Start)
The array factorizes as an infinite product (read from right to left):
/ 1 \ /1 \^m /1 \^m /1 \^m
| 2 1 | | 0 1 | |0 1 | |1 1 |
| 6 6 1 | = ...| 0 0 1 | |0 1 1 | |0 2 1 |
| 24 36 12 1 | | 0 0 1 1 | |0 0 2 1 | |0 0 3 1 |
|120 240 120 20 1| | 0 0 0 2 1| |0 0 0 3 1| |0 0 0 4 1|
|... | |... | |... | |... |
where m = 2. Cf. A008277 (m = 1), A035342 (m = 3), A035469 (m = 4), A049029 (m = 5) A049385 (m = 6), A092082 (m = 7), A132056 (m = 8), A223511 - A223522 (m = 9 through 20), A001497 (m = -1), A004747 (m = -2), A000369 (m = -3), A011801 (m = -4), A013988 (m = -5). (End)
- Reinhard Zumkeller, Rows n = 1..100 of triangle, flattened
- Peter Bala, Factorising (r,b)-Stirling arrays
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
- Paul Barry, Eulerian polynomials as moments, via exponential Riordan arrays, arXiv preprint arXiv:1105.3043 [math.CO], 2011, J. Int. Seq. 14 (2011) # 11.9.5
- Jean-Paul Blaizot and Maciej A. Nowak, Large N_c confinement and turbulence, arXiv:0801.1859 [hep-th], 2008.
- David Callan, Sets, Lists and Noncrossing Partitions, arXiv:0711.4841 [math.CO], 2007-2008.
- Pietro Codara, Ottavio M. D'Antona, and Pavol Hell, A simple combinatorial interpretation of certain generalized Bell and Stirling numbers, arXiv preprint arXiv:1308.1700 [cs.DM], 2013.
- Tom Copeland, Mathemagical Forests, Addendum to Mathemagical Forests, The Inverse Mellin Transform, Bell Polynomials, a Generalized Dobinski Relation, and the Confluent Hypergeometric Functions, A Class of Differential Operators and the Stirling Numbers
- Siad Daboul, Jan Mangaldan, Michael Z. Spivey and Peter Taylor, The Lah Numbers and the n-th Derivative of exp(1/x), Math. Mag., 86 (2013), 39-47.
- Bérénice Delcroix-Oger and Clément Dupont, Lie-operads and operadic modules from poset cohomology, arXiv:2505.06094 [math.CO], 2025. See p. 33.
- G. H. E. Duchamp et al., Feynman graphs and related Hopf algebras, J. Phys. (Conf Ser) 30 (2006) 107-118.
- Rajesh Gopakumar and David J. Gross, Mastering the master field, arXiv:hep-th/9411021, 1994.
- Gábor Hetyei, Meixner polynomials of the second kind and quantum algebras representing su(1,1), arXiv preprint arXiv:0909.4352 [math.QA], 2009, p. 4. - From _Tom Copeland_, Oct 01 2015
- Milan Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3.
- Donald E. Knuth, Convolution polynomials, The Mathematica J., 2 (1992), 67-78.
- Shi-Mei Ma, Some combinatorial sequences associated with context-free grammars, arXiv:1208.3104v2 [math.CO], 2012. - From _N. J. A. Sloane_, Aug 21 2012
- MacTutor History of Mathematics archive: Biography of Ivo Lah.
- Robert S. Maier, Boson Operator Ordering Identities from Generalized Stirling and Eulerian Numbers, arXiv:2308.10332 [math.CO], 2023. See p. 19.
- Norihiro Nakashima and Shuhei Tsujie, Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species, arXiv:1904.09748 [math.CO], 2019. See p. 18.
- Michael Penn, Lah Numbers and an appearance of exponential generating functions, YouTube video, 2025.
- Mathias Pétréolle and Alan D. Sokal, Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions, arXiv:1907.02645 [math.CO], 2019. See p. 4.
- Tilman Piesk, Illustration of the first four rows
- Kornelia Ufniarz and Grzegorz Siudem, Combinatorial origins of the canonical ensemble, arXiv:2008.00244 [math-ph], 2020. See p. 5.
- Weiping Wang and Tianming Wang, Generalized Riordan arrays, Discrete Mathematics, Vol. 308, No. 24, 6466-6500.
- Wikipedia, Lah number
Triangle of Lah numbers (
A008297) unsigned.
Cf.
A111596 (signed triangle with extra n=0 row and m=0 column).
Cf.
A130561 (for a natural refinement).
Cf.
A094638 (for differential operator representation).
Cf.
A089231 (triangle with mirrored rows).
Cf.
A271703 (triangle with extra n=0 row and m=0 column).
-
Flat(List([1..10],n->List([1..n],k->Binomial(n,k)*Factorial(n-1)/Factorial(k-1)))); # Muniru A Asiru, Jul 25 2018
-
a105278 n k = a105278_tabl !! (n-1) !! (k-1)
a105278_row n = a105278_tabl !! (n-1)
a105278_tabl = [1] : f [1] 2 where
f xs i = ys : f ys (i + 1) where
ys = zipWith (+) ([0] ++ xs) (zipWith (*) [i, i + 1 ..] (xs ++ [0]))
-- Reinhard Zumkeller, Sep 30 2014, Mar 18 2013
-
/* As triangle */ [[Binomial(n,k)*Factorial(n-1)/Factorial(k-1): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 31 2014
-
The triangle: for n from 1 to 13 do seq(binomial(n,k)*(n-1)!/(k-1)!,k=1..n) od;
the sequence: seq(seq(binomial(n,k)*(n-1)!/(k-1)!,k=1..n),n=1..13);
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ...) as column 0.
BellMatrix(n -> (n+1)!, 9); # Peter Luschny, Jan 27 2016
-
nn = 9; a = x/(1 - x); f[list_] := Select[list, # > 0 &]; Flatten[Map[f, Drop[Range[0, nn]! CoefficientList[Series[Exp[y a], {x, 0, nn}], {x, y}], 1]]] (* Geoffrey Critzer, Dec 11 2011 *)
nn = 9; Flatten[Table[(j - k)! Binomial[j, k] Binomial[j - 1, k - 1], {j, nn}, {k, j}]] (* Jan Mangaldan, Mar 15 2013 *)
rows = 10;
t = Range[rows]!;
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
T[n_, n_] := 1; T[n_, k_] /;0Oliver Seipel, Dec 06 2024 *)
-
use ntheory ":all"; say join ", ", map { my $n=$; map { stirling($n,$,3) } 1..$n; } 1..9; # Dana Jacobsen, Mar 16 2017
A223168
Triangle S(n, k) by rows: coefficients of 2^((n-1)/2)*(x^(1/2)*d/dx)^n when n is odd, and of 2^(n/2)*(x^(1/2)*d/dx)^n when n is even.
Original entry on oeis.org
1, 1, 2, 3, 2, 3, 12, 4, 15, 20, 4, 15, 90, 60, 8, 105, 210, 84, 8, 105, 840, 840, 224, 16, 945, 2520, 1512, 288, 16, 945, 9450, 12600, 5040, 720, 32, 10395, 34650, 27720, 7920, 880, 32, 10395, 124740, 207900, 110880, 23760, 2112, 64, 135135, 540540, 540540, 205920, 34320, 2496, 64
Offset: 0
Triangle begins:
1;
1, 2;
3, 2;
3, 12, 4;
15, 20, 4;
15, 90, 60, 8;
105, 210, 84, 8;
105, 840, 840, 224, 16;
945, 2520, 1512, 288, 16;
945, 9450, 12600, 5040, 720, 32;
10395, 34650, 27720, 7920, 880, 32;
10395, 124740, 207900, 110880, 23760, 2112, 64;
135135, 540540, 540540, 205920, 34320, 2496, 64;
.
Expansion takes the form:
2^0 (x^(1/2)*d/dx)^1 = 1*x^(1/2)*d/dx.
2^1 (x^(1/2)*d/dx)^2 = 1*d/dx + 2*x*d^2/dx^2.
2^1 (x^(1/2)*d/dx)^3 = 3*x^(1/2)*d^2/dx^2 + 2*x^(3/2)*d^3/dx^3.
2^2 (x^(1/2)*d/dx)^4 = 3*d^2/dx^2 + 12*x*d^3/dx^3 + 4*x^2*d^4/dx^4.
2^2 (x^(1/2)*d/dx)^5 = 15*x^(1/2)*d^3/dx^3 + 20*x^(3/2)*d^4/dx^4 + 4*x^(5/2)*d^5/dx^5.
`
`
Odd rows includes absolute values of
A098503 from right to left.
Cf.
A223169-
A223172,
A223523-
A223532,
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223511-
A223522.
-
a[0]:= f(x);
for i from 1 to 13 do
a[i]:= simplify(2^((i+1)mod 2)*x^(1/2)*(diff(a[i-1],x$1)));
end do;
-
Flatten[CoefficientList[Expand[FullSimplify[Table[D[E^(n*x^2),{x,k}]/(E^(n*x^2)*(2*n)^Floor[(k+1)/2]),{k,1,13}]]]/.x->1,n]] (* Vaclav Kotesovec, Jul 16 2013 *)
A223172
Triangle S(n,k) by rows: coefficients of 6^((n-1)/2)*(x^(1/6)*d/dx)^n when n is odd, and of 6^(n/2)*(x^(5/6)*d/dx)^n when n is even.
Original entry on oeis.org
1, 1, 6, 7, 6, 7, 84, 36, 91, 156, 36, 91, 1638, 1404, 216, 1729, 4446, 2052, 216, 1729, 41496, 53352, 16416, 1296, 43225, 148200, 102600, 21600, 1296, 43225, 1296750, 2223000, 1026000, 162000, 7776, 1339975, 5742750, 5301000, 1674000, 200880, 7776
Offset: 0
Triangle begins:
1;
1, 6;
7, 6;
7, 84, 36;
91, 156, 36;
91, 1638, 1404, 216;
1729, 4446, 2052, 216;
1729, 41496, 53352, 16416, 1296;
43225, 148200, 102600, 21600, 1296;
43225, 1296750, 2223000, 1026000, 162000, 7776;
1339975, 5742750, 5301000, 1674000, 200880, 7776;
1339975, 48239100, 103369500, 63612000, 15066000, 1446336, 46656;
Cf.
A223168-
A223172,
A223523-
A223532,
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223511-
A223522.
A092082
Triangle of numbers related to triangle A092083; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297, ...
Original entry on oeis.org
1, 7, 1, 91, 21, 1, 1729, 511, 42, 1, 43225, 15015, 1645, 70, 1, 1339975, 523705, 69300, 4025, 105, 1, 49579075, 21240765, 3226405, 230300, 8330, 147, 1, 2131900225, 984172735, 166428990, 13820205, 621810, 15386, 196, 1, 104463111025
Offset: 1
{1}; {7,1}; {91,21,1}; {1729,511,42,1}; ...
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, in Lecture Notes in Computer Science vol. 581, (1992), pp. 24-48.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem., arXiv:quant-phys/0402027, 2004.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- M. Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3
- W. Lang, First 10 rows.
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Shi-Mei Ma, Some combinatorial sequences associated with context-free grammars, arXiv:1208.3104v2 [math.CO], 2012. - From N. J. A. Sloane, Aug 21 2012
-
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> mul(6*k+1, k=0..n), 9); # Peter Luschny, Jan 26 2016
-
mmax = 9; a[n_, m_] := n!*Coefficient[Series[((-1 + (1 - 6*x)^(-1/6))^m)/m!, {x, 0, mmax}], x^n];
Flatten[Table[a[n, m], {n, 1, mmax}, {m, 1, n}]][[1 ;; 37]] (* Jean-François Alcover, Jun 22 2011, after e.g.f. *)
rows = 9;
t = Table[Product[6k+1, {k, 0, n}], {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
A134278
A certain partition array in Abramowitz-Stegun order (A-St order), called M_3(6).
Original entry on oeis.org
1, 6, 1, 66, 18, 1, 1056, 264, 108, 36, 1, 22176, 5280, 3960, 660, 540, 60, 1, 576576, 133056, 95040, 43560, 15840, 23760, 3240, 1320, 1620, 90, 1, 17873856, 4036032, 2794176, 2439360, 465696, 665280, 304920, 249480, 36960, 83160, 22680, 2310
Offset: 1
[1]; [6,1]; [66,18,1]; [1056,264,108,36,1]; [22176,5280,3960,660,540,60,1]; ...
There are a(4,3) = 108 = 3*6^2 unordered 2-forests with 4 vertices, composed of two 6-ary increasing trees, each with two vertices: there are 3 increasing labelings (1,2)(3,4); (1,3)(2,4); (1,4)(2,3) and each tree comes in six versions from the 6-ary structure.
Cf.
A134273 (M_3(5) partition array).
A132056
Triangle read by rows, the Bell transform of Product_{k=0..n} 7*k+1 without column 0.
Original entry on oeis.org
1, 8, 1, 120, 24, 1, 2640, 672, 48, 1, 76560, 22800, 2160, 80, 1, 2756160, 920160, 104880, 5280, 120, 1, 118514880, 43243200, 5639760, 347760, 10920, 168, 1, 5925744000, 2323918080, 336510720, 24071040, 937440, 20160, 224, 1
Offset: 1
{1}; {8,1}; {120,24,1}; {2640,672,48,1}; ...
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- M. Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3
- W. Lang, First 10 rows.
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> mul(7*k+1, k=0..n), 8); # Peter Luschny, Jan 27 2016
-
a[n_, m_] := a[n, m] = ((m*a[n-1, m-1]*(m-1)! + (m+7*n-7)*a[n-1, m]*m!)*n!)/(n*m!*(n-1)!);
a[n_, m_] /; n < m = 0; a[_, 0] = 0; a[1, 1] = 1;
Flatten[Table[a[n, m], {n, 1, 8}, {m, 1, n}]][[1 ;; 36]]
(* Jean-François Alcover, Jun 17 2011 *)
rows = 8;
a[n_, m_] := BellY[n, m, Table[Product[7k+1, {k, 0, j}], {j, 0, rows}]];
Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
A223532
Triangle S(n,k) by rows: coefficients of 6^(n/2)*(x^(5/6)*d/dx)^n when n=0,2,4,6,...
Original entry on oeis.org
1, 1, 6, 7, 84, 36, 91, 1638, 1404, 216, 1729, 41496, 53352, 16416, 1296, 43225, 1296750, 2223000, 1026000, 162000, 7776, 1339975, 48239100, 103369500, 63612000, 15066000, 1446336, 46656, 49579075, 2082321150, 5354540100, 4118877000, 1300698000, 187300512
Offset: 1
Triangle begins:
1;
1, 6;
7, 84, 36;
91, 1638, 1404, 216;
1729, 41496, 53352, 16416, 1296;
43225, 1296750, 2223000, 1026000, 162000, 7776;
1339975, 48239100, 103369500, 63612000, 15066000, 1446336, 46656;
49579075, 2082321150, 5354540100, 4118877000, 1300698000, 187300512, 12083904, 279936;
Cf.
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223511-
A223522,
A223168-
A223172,
A223523-
A223532.
A223511
Triangle T(n,k) represents the coefficients of (x^9*d/dx)^n, where n=1,2,3,...;generalization of Stirling numbers of second kind A008277, Lah-numbers A008297.
Original entry on oeis.org
1, 9, 1, 153, 27, 1, 3825, 855, 54, 1, 126225, 32895, 2745, 90, 1, 5175225, 1507815, 150930, 6705, 135, 1, 253586025, 80565975, 9205245, 499590, 13860, 189, 1, 14454403425, 4926412575, 623675430, 39180645, 1345050, 25578, 252, 1
Offset: 1
1;
9,1;
153,27,1;
3825,855,54,1;
126225,32895,2745,90,1;
5175225,1507815,150930,6705,135,1;
253586025,80565975,9205245,499590,13860,189,1;
14454403425,4926412575,623675430,39180645,1345050,25578,252,1;
Cf.
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223512-
A223522,
A223168-
A223172,
A223523-
A223532.
-
b[0]:=g(x):
for j from 1 to 10 do
b[j]:=simplify(x^9*diff(b[j-1],x$1);
end do;
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> mul(8*k+1, k=0..n), 10); # Peter Luschny, Jan 29 2016
-
rows = 8;
t = Table[Product[8k+1, {k, 0, n}], {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
Showing 1-10 of 33 results.
Next
Comments