A223172
Triangle S(n,k) by rows: coefficients of 6^((n-1)/2)*(x^(1/6)*d/dx)^n when n is odd, and of 6^(n/2)*(x^(5/6)*d/dx)^n when n is even.
Original entry on oeis.org
1, 1, 6, 7, 6, 7, 84, 36, 91, 156, 36, 91, 1638, 1404, 216, 1729, 4446, 2052, 216, 1729, 41496, 53352, 16416, 1296, 43225, 148200, 102600, 21600, 1296, 43225, 1296750, 2223000, 1026000, 162000, 7776, 1339975, 5742750, 5301000, 1674000, 200880, 7776
Offset: 0
Triangle begins:
1;
1, 6;
7, 6;
7, 84, 36;
91, 156, 36;
91, 1638, 1404, 216;
1729, 4446, 2052, 216;
1729, 41496, 53352, 16416, 1296;
43225, 148200, 102600, 21600, 1296;
43225, 1296750, 2223000, 1026000, 162000, 7776;
1339975, 5742750, 5301000, 1674000, 200880, 7776;
1339975, 48239100, 103369500, 63612000, 15066000, 1446336, 46656;
Cf.
A223168-
A223172,
A223523-
A223532,
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223511-
A223522.
A223532
Triangle S(n,k) by rows: coefficients of 6^(n/2)*(x^(5/6)*d/dx)^n when n=0,2,4,6,...
Original entry on oeis.org
1, 1, 6, 7, 84, 36, 91, 1638, 1404, 216, 1729, 41496, 53352, 16416, 1296, 43225, 1296750, 2223000, 1026000, 162000, 7776, 1339975, 48239100, 103369500, 63612000, 15066000, 1446336, 46656, 49579075, 2082321150, 5354540100, 4118877000, 1300698000, 187300512
Offset: 1
Triangle begins:
1;
1, 6;
7, 84, 36;
91, 1638, 1404, 216;
1729, 41496, 53352, 16416, 1296;
43225, 1296750, 2223000, 1026000, 162000, 7776;
1339975, 48239100, 103369500, 63612000, 15066000, 1446336, 46656;
49579075, 2082321150, 5354540100, 4118877000, 1300698000, 187300512, 12083904, 279936;
Cf.
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223511-
A223522,
A223168-
A223172,
A223523-
A223532.
A223511
Triangle T(n,k) represents the coefficients of (x^9*d/dx)^n, where n=1,2,3,...;generalization of Stirling numbers of second kind A008277, Lah-numbers A008297.
Original entry on oeis.org
1, 9, 1, 153, 27, 1, 3825, 855, 54, 1, 126225, 32895, 2745, 90, 1, 5175225, 1507815, 150930, 6705, 135, 1, 253586025, 80565975, 9205245, 499590, 13860, 189, 1, 14454403425, 4926412575, 623675430, 39180645, 1345050, 25578, 252, 1
Offset: 1
1;
9,1;
153,27,1;
3825,855,54,1;
126225,32895,2745,90,1;
5175225,1507815,150930,6705,135,1;
253586025,80565975,9205245,499590,13860,189,1;
14454403425,4926412575,623675430,39180645,1345050,25578,252,1;
Cf.
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223512-
A223522,
A223168-
A223172,
A223523-
A223532.
-
b[0]:=g(x):
for j from 1 to 10 do
b[j]:=simplify(x^9*diff(b[j-1],x$1);
end do;
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> mul(8*k+1, k=0..n), 10); # Peter Luschny, Jan 29 2016
-
rows = 8;
t = Table[Product[8k+1, {k, 0, n}], {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
A223523
Triangle S(n, k) by rows: coefficients of 2^((n-1)/2)*(x^(1/2)*d/dx)^n, where n = 1, 3, 5, ...
Original entry on oeis.org
1, 3, 2, 15, 20, 4, 105, 210, 84, 8, 945, 2520, 1512, 288, 16, 10395, 34650, 27720, 7920, 880, 32, 135135, 540540, 540540, 205920, 34320, 2496, 64, 2027025, 9459450, 11351340, 5405400, 1201200, 131040, 6720, 128
Offset: 1
Triangle begins:
1;
3, 2;
15, 20, 4;
105, 210, 84, 8;
945, 2520, 1512, 288, 16;
10395, 34650, 27720, 7920, 880, 32;
135135, 540540, 540540, 205920, 34320, 2496, 64;
.
.
Expansion takes the form:
2^0 (x^(1/2)*d/dx)^1 = 1*x^(1/2)*d/dx.
2^1 (x^(1/2)*d/dx)^3 = 3*x^(1/2)*d^2/dx^2 + 2*x^(3/2)*d^3/dx^3.
2^2 (x^(1/2)*d/dx)^5 = 15*x^(1/2)*d^3/dx^3 + 20*x^(3/2)*d^4/dx^4 + 4*x^(5/2)*d^5/dx^5.
Rows includes absolute values of
A098503 from right to left of the triangular form.
A223522
Triangle T(n,k) represents the coefficients of (x^20*d/dx)^n, where n=1,2,3,...; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297.
Original entry on oeis.org
1, 20, 1, 780, 60, 1, 45240, 4320, 120, 1, 3483480, 382200, 13800, 200, 1, 334414080, 40556880, 1734600, 33600, 300, 1, 38457619200, 5039012160, 243505080, 5699400, 69300, 420, 1
Offset: 1
1;
20,1;
780,60,1;
45240,4320,120,1;
3483480,382200,13800,200,1;
334414080,40556880,1734600,33600,300,1;
38457619200,5039012160,243505080,5699400,69300,420,1;
5153320972800,718724260800,38155703040,1024322880,15262800,127680,560,1;
Cf.
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223511-
A223522,
A223168-
A223172,
A223523-
A223532.
A098503
Triangle T(n,k) by rows: coefficient [x^(n-k)] of 2^n * n! *L(n,1/2,x), with L the generalized Laguerre polynomials in the Abramowitz-Stegun normalization.
Original entry on oeis.org
1, -2, 3, 4, -20, 15, -8, 84, -210, 105, 16, -288, 1512, -2520, 945, -32, 880, -7920, 27720, -34650, 10395, 64, -2496, 34320, -205920, 540540, -540540, 135135, -128, 6720, -131040, 1201200, -5405400, 11351340, -9459450, 2027025, 256, -17408
Offset: 0
2^0 *0! *L(0,1/2,x) = 1.
2^1 *1! *L(1,1/2,x) = -2*x + 3.
2^2 *2! *L(2,1/2,x) = 4*x^2 - 20*x + 15.
2^3 *3! *L(3,1/2,x) = -8*x^3 + 84*x^2 - 210*x + 105.
2^4 *4! *L(4,1/2,x) = 16*x^4 - 288*x^3 + 1512*x^2 - 2520*x + 945.
Triangle begins:
1;
-2, 3;
4, -20, 15;
-8, 84, -210, 105;
16, -288, 1512, -2520, 945;
-32, 880, -7920, 27720, -34650, 10395;
64, -2496, 34320, -205920, 540540, -540540, 135135;
-
Table[Reverse[Table[2^n*(-1)^k*n!/k!*Binomial[n + 1/2, n - k], {k, 0, n}]], {n, 0, 7}] (* T. D. Noe, Apr 05 2013 *)
A223536
Coefficients of (x^(1/6)*d/dx)^n for positive integer n.
Original entry on oeis.org
1, 1, 6, -2, 9, 8, 6, 13, 36, 36, -42, 70, -75, 180, 108, 798, -1162, 945, -630, 1620, 648, 3192, -4284, 3052, -1575, 630, -2268, -648, 92568, -117684, 77588, -35637, 12600, -1512, 18144, 3888, 1573656
Offset: 1
1;
1, 6;
-2, 9, 8;
6, 13, 36, 36;
-42, 70, -75, 180, 108;
798, -1162, 945, -630, 1620, 648;
A223169
Triangle S(n,k) by rows: coefficients of 3^((n-1)/2)*(x^(1/3)*d/dx)^n when n is odd, and of 3^(n/2)*(x^(2/3)*d/dx)^n when n is even.
Original entry on oeis.org
1, 1, 3, 4, 3, 4, 24, 9, 28, 42, 9, 28, 252, 189, 27, 280, 630, 270, 27, 280, 3360, 3780, 1080, 81, 3640, 10920, 7020, 1404, 81, 3640, 54600, 81900, 35100, 5265, 243, 58240, 218400, 187200, 56160, 6480, 243, 58240, 1048320, 1965600
Offset: 0
Triangle begins:
1;
1, 3;
4, 3;
4, 24, 9;
28, 42, 9;
28, 252, 189, 27;
280, 630, 270, 27;
280, 3360, 3780, 1080, 81;
3640, 10920, 7020, 1404, 81;
3640, 54600, 81900, 35100, 5265, 243,
58240, 218400, 187200, 56160, 6480, 243
Cf.
A223168-
A223172,
A223523-
A223532,
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223511-
A223522.
A223533
Coefficients of (x^(1/3)*d/dx)^n for positive integer n.
Original entry on oeis.org
1, 1, 3, -1, 9, 9, 1, -1, 18, 9, -5, 5, 15, 90, 27, 35, -35, 225, 405, 81, -105, 105, -35, 630, 567, 81, 1155, -1155, 490, -105, 4158, 2268, 243, 15015, -15015, 6895, 945, -10206, -23814, -8748, -729, 75075, -75075, 35700, -10675, 2835, -945, 34020, 41310, 10935, 729
Offset: 1
1;
1, 3;
-1, 9, 9;
1, -1, 18, 9;
-5, 5, 15, 90, 27;
35, -35, 225, 405, 81;
-105, 105, 630, 567, -35, 81;
1155, -1155, 630, 4158, 490, 2268, -105, 243;
A223170
Triangle S(n,k) by rows: coefficients of 4^((n-1)/2)*(x^(1/4)*d/dx)^n when n is odd, and of 4^(n/2)*(x^(3/4)*d/dx)^n when n is even.
Original entry on oeis.org
1, 1, 4, 5, 4, 5, 40, 16, 45, 72, 16, 45, 540, 432, 64, 585, 1404, 624, 64, 585, 9360, 11232, 3328, 256, 9945, 31824, 21216, 4352, 256, 9945, 198900, 318240, 141440, 21760, 1024, 208845, 835380, 742560, 228480, 26880, 1024, 208845, 5012280, 10024560, 5940480, 1370880, 129024, 4096
Offset: 0
Triangle begins:
1;
1, 4;
5, 4;
5, 40, 16;
45, 72, 16;
45, 540, 432, 64;
585, 1404, 624, 64;
585, 9360, 11232, 3328, 256;
9945, 31824, 21216, 4352, 256;
9945, 198900, 318240, 141440, 21760, 1024;
208845, 835380, 742560, 228480, 26880, 1024;
208845, 5012280, 10024560, 5940480, 1370880, 129024, 4096;
Cf.
A223168-
A223172,
A223523-
A223532,
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223511-
A223522.
-
a[0]:= f(x):
for i from 1 to 13 do
a[i] := simplify(4^((i+1)mod 2)*x^((2((i+1)mod 2)+1)/4)*(diff(a[i-1],x$1 )));
end do;
-
nmax = 12;
b[0] = Exp[x]; For[ i = 1 , i <= nmax , i++, b[i] = 4^Mod[i + 1, 2]*x^((2 Mod[i + 1, 2] + 1)/4)*D[b[i - 1], x]] // Simplify;
row[1] = {1}; row[n_] := List @@ Expand[b[n]/f[x]] /. x -> 1;
Table[row[n], {n, 1, nmax}] // Flatten (* Jean-François Alcover, Feb 22 2019, from Maple *)
Showing 1-10 of 31 results.
Comments