A223168 Triangle S(n, k) by rows: coefficients of 2^((n-1)/2)*(x^(1/2)*d/dx)^n when n is odd, and of 2^(n/2)*(x^(1/2)*d/dx)^n when n is even.
1, 1, 2, 3, 2, 3, 12, 4, 15, 20, 4, 15, 90, 60, 8, 105, 210, 84, 8, 105, 840, 840, 224, 16, 945, 2520, 1512, 288, 16, 945, 9450, 12600, 5040, 720, 32, 10395, 34650, 27720, 7920, 880, 32, 10395, 124740, 207900, 110880, 23760, 2112, 64, 135135, 540540, 540540, 205920, 34320, 2496, 64
Offset: 0
Examples
Triangle begins: 1; 1, 2; 3, 2; 3, 12, 4; 15, 20, 4; 15, 90, 60, 8; 105, 210, 84, 8; 105, 840, 840, 224, 16; 945, 2520, 1512, 288, 16; 945, 9450, 12600, 5040, 720, 32; 10395, 34650, 27720, 7920, 880, 32; 10395, 124740, 207900, 110880, 23760, 2112, 64; 135135, 540540, 540540, 205920, 34320, 2496, 64; . Expansion takes the form: 2^0 (x^(1/2)*d/dx)^1 = 1*x^(1/2)*d/dx. 2^1 (x^(1/2)*d/dx)^2 = 1*d/dx + 2*x*d^2/dx^2. 2^1 (x^(1/2)*d/dx)^3 = 3*x^(1/2)*d^2/dx^2 + 2*x^(3/2)*d^3/dx^3. 2^2 (x^(1/2)*d/dx)^4 = 3*d^2/dx^2 + 12*x*d^3/dx^3 + 4*x^2*d^4/dx^4. 2^2 (x^(1/2)*d/dx)^5 = 15*x^(1/2)*d^3/dx^3 + 20*x^(3/2)*d^4/dx^4 + 4*x^(5/2)*d^5/dx^5. ` `
Links
- Vincenzo Librandi, Rows n = 0..60, flattened
- U. N. Katugampola, Mellin Transforms of Generalized Fractional Integrals and Derivatives, Appl. Math. Comput. 257(2015) 566-580.
- U. N. Katugampola, Existence and Uniqueness results for a class of Generalized Fractional Differential Equations, arXiv preprint arXiv:1411.5229 [math.CA], 2014.
Crossrefs
Programs
-
Maple
a[0]:= f(x); for i from 1 to 13 do a[i]:= simplify(2^((i+1)mod 2)*x^(1/2)*(diff(a[i-1],x$1))); end do;
-
Mathematica
Flatten[CoefficientList[Expand[FullSimplify[Table[D[E^(n*x^2),{x,k}]/(E^(n*x^2)*(2*n)^Floor[(k+1)/2]),{k,1,13}]]]/.x->1,n]] (* Vaclav Kotesovec, Jul 16 2013 *)
Comments