cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 60 results. Next

A034688 Expansion of (1-25*x)^(-1/5), related to quintic factorial numbers A008548.

Original entry on oeis.org

1, 5, 75, 1375, 27500, 577500, 12512500, 277062500, 6233906250, 141994531250, 3265874218750, 75708902343750, 1766541054687500, 41445770898437500, 976936028320312500, 23120819336914062500, 549119459251708984375
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([0..20], n-> 5^n*Product([0..n-1], k-> 5*k+1)/Factorial(n)); # G. C. Greubel, Aug 17 2019
  • Magma
    [1] cat [5^n*(&*[5*k+1: k in [0..n-1]])/Factorial(n): n in [1..20]]; // G. C. Greubel, Aug 17 2019
    
  • Maple
    A034688 := n -> (-25)^n*binomial(-1/5, n):
    seq(A034688(n), n=0..16); # Peter Luschny, Oct 23 2018
  • Mathematica
    Table[(-25)^n*Binomial[-1/5,n], {n,0,20}] (* G. C. Greubel, Aug 17 2019 *)
    CoefficientList[Series[1/Surd[1-25x,5],{x,0,20}],x] (* Harvey P. Dale, Sep 11 2022 *)
  • PARI
    vector(20, n, n--; 5^n*prod(k=0, n-1, 5*k+1)/n!) \\ G. C. Greubel, Aug 17 2019
    
  • Sage
    [5^n*product(5*k+1 for k in (0..n-1))/factorial(n) for n in (0..20)] # G. C. Greubel, Aug 17 2019
    

Formula

a(n) = (5^n/n!)*A008548(n), n >= 1, a(0) := 1, where A008548(n)=(5*n-4)(!^5) := Product_{j=1..n} (5*j-4).
G.f.: (1-25*x)^(-1/5).
a(n) ~ Gamma(1/5)^-1*n^(-4/5)*5^(2*n)*{1 - 2/25*n^-1 - ...}. - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
a(n) = (-25)^n*binomial(-1/5, n). - Peter Luschny, Oct 23 2018
E.g.f.: L_{-1/5}(25*x), where L_{k}(x) is the Laguerre polynomial. - Stefano Spezia, Aug 17 2019
D-finite with recurrence: n*a(n) +5*(-5*n+4)*a(n-1)=0. - R. J. Mathar, Jan 17 2020

A051687 a(n) = (5*n+6)(!^5)/6, related to A008548 ((5*n+1)(!^5) quintic, or 5-factorials).

Original entry on oeis.org

1, 11, 176, 3696, 96096, 2978976, 107243136, 4396968576, 202260554496, 10315288279296, 577656143640576, 35237024762075136, 2325643634296958976, 165120698035084087296, 12549173050666390634496
Offset: 0

Views

Author

Keywords

Comments

Row m=6 of the array A(6; m,n) := ((5*n+m)(!^5))/m(!^5), m >= 0, n >= 0.

Crossrefs

Cf. A052562, A008548(n+1), A034323(n+1), A034300(n+1), A034301(n+1), A034325(n+1), A051687-A051691 (rows m=0..10).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-5*x)^(11/5))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 10, 5!, 5}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    With[{nn = 30}, CoefficientList[Series[1/(1 - 5*x)^(11/5), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-5*x)^(11/5))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((5*n+6)(!^5))/6(!^5).
E.g.f.: 1/(1-5*x)^(11/5).

A034687 Related to quintic factorial numbers A008548.

Original entry on oeis.org

1, 15, 275, 5500, 115500, 2502500, 55412500, 1246781250, 28398906250, 653174843750, 15141780468750, 353308210937500, 8289154179687500, 195387205664062500, 4624163867382812500, 109823891850341796875
Offset: 1

Views

Author

Keywords

Comments

Convolution of A034688(n-1) with A025750(n), n >= 1.

Crossrefs

Programs

  • GAP
    List([1..20], n-> 5^(n-1)*Product([0..n-1], k-> 5*k+1)/Factorial(n)); # G. C. Greubel, Aug 17 2019
  • Magma
    [5^(n-1)*(&*[5*k+1: k in [0..n-1]])/Factorial(n): n in [1..20]]; // G. C. Greubel, Aug 17 2019
    
  • Maple
    seq(5^(n-1)*(product(5*k+1, k = 0..n-1))/factorial(n), n = 1..20); # G. C. Greubel, Aug 17 2019
  • Mathematica
    Table[5^(2*n-1)*Pochhammer[1/5, n]/n!, {n, 20}] (* G. C. Greubel, Aug 17 2019 *)
  • PARI
    vector(20, n, 5^(n-1)*prod(k=0, n-1, 5*k+1)/n!) \\ G. C. Greubel, Aug 17 2019
    
  • Sage
    [5^(n-1)*product(5*k+1 for k in (0..n-1))/factorial(n) for n in (1..20)] # G. C. Greubel, Aug 17 2019
    

Formula

a(n) = 5^(n-1)*A008548(n)/n!, where A008548(n) = (5*n-4)(!^5) = Product_{j=1..n} (5*j-4).
G.f.: (-1 + (1-25*x)^(-1/5))/5.
E.g.f.: (1/5)*L_{-1/5}(25*x) - 1, where L_{k}(x) is the Laguerre polynomial. - Stefano Spezia, Aug 17 2019
a(n) ~ 5^(2*n-1) * n^(-4/5) / Gamma(1/5). - Amiram Eldar, Aug 17 2025

A169620 Hankel transform of quintuple factorial numbers A008548.

Original entry on oeis.org

1, 5, 1500, 74250000, 1176120000000000, 9780613920000000000000000, 63441756579801600000000000000000000000, 446492348463430358369280000000000000000000000000000000
Offset: 0

Views

Author

Paul Barry, Dec 03 2009

Keywords

Crossrefs

Cf. A008548.

Programs

  • GAP
    List([0..10], n-> Product([0..n], k-> ((5*k+1)*(5*k+5))^(n-k))); # G. C. Greubel, Aug 17 2019
  • Magma
    [(&*[((5*k+1)*(5*k+5))^(n-k): k in [0..n]]): n in [0..10]]; // G. C. Greubel, Aug 17 2019
    
  • Maple
    seq(product(((5*k+1)*(5*k+5))^(n-k), k = 0..n), n = 0..10); # G. C. Greubel, Aug 17 2019
  • Mathematica
    Table[Product[((5*k+1)*(5*k+5))^(n-k), {k,0,n}], {n,0,10}] (* G. C. Greubel, Aug 17 2019 *)
  • PARI
    vector(10, n, n--; prod(k=0,n, ((5*k+1)*(5*k+5))^(n-k))) \\ G. C. Greubel, Aug 17 2019
    
  • Sage
    [product(((5*k+1)*(5*k+5))^(n-k) for k in (0..n)) for n in (0..10)] # G. C. Greubel, Aug 17 2019
    

Formula

a(n) = Product_{k=0..n} ((5*k+1)*(5*k+5))^(n-k).
a(n) ~ (2*Pi)^(n + 3/5) * 5^(n*(n+1)) * n^(n^2 + 6*n/5 + 53/150) / (A * Gamma(1/5)^(n + 1/5) * exp(3*n^2/2 + 6*n/5 - 1/12 - c)), where A is the Glaisher-Kinkelin constant A074962 and c = zeta'(-1, 1/5) = 0.0831827651866002925663000008102352492418540625037508868... - Vaclav Kotesovec, Jan 23 2024

A007559 Triple factorial numbers (3*n-2)!!! with leading 1 added.

Original entry on oeis.org

1, 1, 4, 28, 280, 3640, 58240, 1106560, 24344320, 608608000, 17041024000, 528271744000, 17961239296000, 664565853952000, 26582634158080000, 1143053268797440000, 52580450364682240000, 2576442067869429760000, 133974987529210347520000, 7368624314106569113600000
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of increasing quaternary trees on n vertices. (See A001147 for ternary and A000142 for binary trees.) - David Callan, Mar 30 2007
a(n) is the product of the positive integers k <= 3*n that have k modulo 3 = 1. - Peter Luschny, Jun 23 2011
See A094638 for connections to differential operators. - Tom Copeland, Sep 20 2011
Partial products of A016777. - Reinhard Zumkeller, Sep 20 2013
For n > 2, a(n) is a Zumkeller number. - Ivan N. Ianakiev, Jan 28 2020
a(n) is the number of generalized permutations of length n related to the degenerate Eulerian numbers (see arXiv:2007.13205), cf. A336633. - Orli Herscovici, Jul 28 2020

Examples

			G.f. = 1 + x + 4*x^2 + 28*x^3 + 280*x^4 + 3640*x^5 + 58240*x^6 + ...
a(3) = 28 and a(4) = 280; with top row of M^3 = (28, 117, 108, 27), sum = 280.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n)= A035469(n, 1), n >= 1, (first column of triangle A035469(n, m)).
Cf. A107716. - Gary W. Adamson, Oct 22 2009
Cf. A095660. - Gary W. Adamson, Jul 19 2011
Subsequence of A007661. A007696, A008548.
a(n) = A286718(n,0), n >= 0.
Row sums of A336633.

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 3*k+1 )); # G. C. Greubel, Aug 20 2019
  • Haskell
    a007559 n = a007559_list !! n
    a007559_list = scanl (*) 1 a016777_list
    -- Reinhard Zumkeller, Sep 20 2013
    
  • Magma
    b:= func< n | (n lt 2) select n else (3*n-2)*Self(n-1) >;
    [1] cat [b(n): n in [1..20]]; // G. C. Greubel, Aug 20 2019
    
  • Maple
    A007559 := n -> mul(k, k = select(k-> k mod 3 = 1, [$1 .. 3*n])): seq(A007559(n), n = 0 .. 17); # Peter Luschny, Jun 23 2011
    # second Maple program:
    b:= proc(n) option remember; `if`(n<1, 1, n*b(n-3)) end:
    a:= n-> b(3*n-2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Dec 18 2024
  • Mathematica
    a[ n_] := If[ n < 0, 1 / Product[ k, {k, - 2, 3 n - 1, -3}],
      Product[ k, {k, 1, 3 n - 2, 3}]]; (* Michael Somos, Oct 14 2011 *)
    FoldList[Times,1,Range[1,100,3]] (* Harvey P. Dale, Jul 05 2013 *)
    Range[0, 19]! CoefficientList[Series[((1 - 3 x)^(-1/3)), {x, 0, 19}], x] (* Vincenzo Librandi, Oct 08 2015 *)
  • Maxima
    a(n):=if n=1 then 1 else (n)!*(sum(m/n*sum(binomial(k,n-m-k)*(-1/3)^(n-m-k)* binomial (k+n-1,n-1),k,1,n-m),m,1,n)+1); /* Vladimir Kruchinin, Aug 09 2010 */
    
  • PARI
    {a(n) = if( n<0, (-1)^n / prod(k=0,-1-n, 3*k + 2), prod(k=0, n-1, 3*k + 1))}; /* Michael Somos, Oct 14 2011 */
    
  • PARI
    my(x='x+O('x^33)); Vec(serlaplace((1-3*x)^(-1/3))) /* Joerg Arndt, Apr 24 2011 */
    
  • Sage
    def A007559(n) : return mul(j for j in range(1,3*n,3))
    [A007559(n) for n in (0..17)]  # Peter Luschny, May 20 2013
    

Formula

a(n) = Product_{k=0..n-1} (3*k + 1).
a(n) = (3*n - 2)!!!.
a(n) = A007661(3*n-2).
E.g.f.: (1-3*x)^(-1/3).
a(n) ~ sqrt(2*Pi)/Gamma(1/3)*n^(-1/6)*(3*n/e)^n*(1 - (1/36)/n - ...). - Joe Keane (jgk(AT)jgk.org), Nov 22 2001
a(n) = 3^n*Pochhammer(1/3, n).
a(n) = Sum_{k=0..n} (-3)^(n-k)*A048994(n, k). - Philippe Deléham, Oct 29 2005
a(n) = n!*(1+Sum_{m=1..n} (m/n)*Sum_{k=1..n-m} binomial(k, n-m-k)*(-1/3)^(n-m-k)*binomial(k+n-1, n-1)), n>1. - Vladimir Kruchinin, Aug 09 2010
From Gary W. Adamson, Jul 19 2011: (Start)
a(n) = upper left term in M^n, M = a variant of Pascal (1,3) triangle (Cf. A095660); as an infinite square production matrix:
1, 3, 0, 0, 0,...
1, 4, 3, 0, 0,...
1, 5, 7, 3, 0,...
...
a(n+1) = sum of top row terms of M^n. (End)
a(n) = (-2)^n*Sum_{k=0..n} (3/2)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/Q(0) where Q(k) = 1 - x*(3*k+1)/( 1 - x*(3*k+3)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 21 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(3*k+1)/(x*(3*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
E.g.f.: E(0)/2, where E(k)= 1 + 1/(1 - x*(3*k+1)/(x*(3*k+1) + (k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
Let D(x) = 1/sqrt(1 - 2*x) be the e.g.f. for the sequence of double factorial numbers A001147. Then the e.g.f. A(x) for the triple factorial numbers satisfies D( Integral_{t=0..x} A(t) dt ) = A(x). Cf. A007696 and A008548. - Peter Bala, Jan 02 2015
O.g.f.: hypergeom([1, 1/3], [], 3*x). - Peter Luschny, Oct 08 2015
a(n) = 3^n * Gamma(n + 1/3)/Gamma(1/3). - Artur Jasinski, Aug 23 2016
a(n) = (-1)^n / A008544(n), 0 = a(n)*(+3*a(n+1) -a(n+2)) +a(n+1)*a(n+1) for all n in Z. - Michael Somos, Sep 30 2018
D-finite with recurrence: a(n) +(-3*n+2)*a(n-1)=0, n>=1. - R. J. Mathar, Feb 14 2020
Sum_{n>=1} 1/a(n) = (e/9)^(1/3) * (Gamma(1/3) - Gamma(1/3, 1/3)). - Amiram Eldar, Jun 29 2020

Extensions

Better description from Wolfdieter Lang

A132393 Triangle of unsigned Stirling numbers of the first kind (see A048994), read by rows, T(n,k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 6, 11, 6, 1, 0, 24, 50, 35, 10, 1, 0, 120, 274, 225, 85, 15, 1, 0, 720, 1764, 1624, 735, 175, 21, 1, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1, 0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 0, 362880, 1026576, 1172700, 723680, 269325, 63273, 9450, 870, 45, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 10 2007, Oct 15 2008, Oct 17 2008

Keywords

Comments

Another name: Triangle of signless Stirling numbers of the first kind.
Triangle T(n,k), 0<=k<=n, read by rows given by [0,1,1,2,2,3,3,4,4,5,5,...] DELTA [1,0,1,0,1,0,1,0,1,...] where DELTA is the operator defined in A084938.
A094645*A007318 as infinite lower triangular matrices.
Row sums are the factorial numbers. - Roger L. Bagula, Apr 18 2008
Exponential Riordan array [1/(1-x), log(1/(1-x))]. - Ralf Stephan, Feb 07 2014
Also the Bell transform of the factorial numbers (A000142). For the definition of the Bell transform see A264428 and for cross-references A265606. - Peter Luschny, Dec 31 2015
This is the lower triagonal Sheffer matrix of the associated or Jabotinsky type |S1| = (1, -log(1-x)) (see the W. Lang link under A006232 for the notation and references). This implies the e.g.f.s given below. |S1| is the transition matrix from the monomial basis {x^n} to the rising factorial basis {risefac(x,n)}, n >= 0. - Wolfdieter Lang, Feb 21 2017
T(n, k), for n >= k >= 1, is also the total volume of the n-k dimensional cell (polytope) built from the n-k orthogonal vectors of pairwise different lengths chosen from the set {1, 2, ..., n-1}. See the elementary symmetric function formula for T(n, k) and an example below. - Wolfdieter Lang, May 28 2017
From Wolfdieter Lang, Jul 20 2017: (Start)
The compositional inverse w.r.t. x of y = y(t;x) = x*(1 - t(-log(1-x)/x)) = x + t*log(1-x) is x = x(t;y) = ED(y,t) := Sum_{d>=0} D(d,t)*y^(d+1)/(d+1)!, the e.g.f. of the o.g.f.s D(d,t) = Sum_{m>=0} T(d+m, m)*t^m of the diagonal sequences of the present triangle. See the P. Bala link for a proof (there d = n-1, n >= 1, is the label for the diagonals).
This inversion gives D(d,t) = P(d, t)/(1-t)^(2*d+1), with the numerator polynomials P(d, t) = Sum_{m=0..d} A288874(d, m)*t^m. See an example below. See also the P. Bala formula in A112007. (End)
For n > 0, T(n,k) is the number of permutations of the integers from 1 to n which have k visible digits when viewed from a specific end, in the sense that a higher value hides a lower one in a subsequent position. - Ian Duff, Jul 12 2019

Examples

			Triangle T(n,k) begins:
  1;
  0,    1;
  0,    1,     1;
  0,    2,     3,     1;
  0,    6,    11,     6,    1;
  0,   24,    50,    35,   10,    1;
  0,  120,   274,   225,   85,   15,   1;
  0,  720,  1764,  1624,  735,  175,  21,  1;
  0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1;
  ...
---------------------------------------------------
Production matrix is
  0, 1
  0, 1, 1
  0, 1, 2,  1
  0, 1, 3,  3,  1
  0, 1, 4,  6,  4,  1
  0, 1, 5, 10, 10,  5,  1
  0, 1, 6, 15, 20, 15,  6, 1
  0, 1, 7, 21, 35, 35, 21, 7, 1
  ...
From _Wolfdieter Lang_, May 09 2017: (Start)
Three term recurrence: 50 = T(5, 2) = 1*6 + (5-1)*11 = 50.
Recurrence from the Sheffer a-sequence [1, 1/2, 1/6, 0, ...]: 50 = T(5, 2) = (5/2)*(binomial(1, 1)*1*6 + binomial(2, 1)*(1/2)*11 + binomial(3, 1)*(1/6)*6 + 0) = 50. The vanishing z-sequence produces the k=0 column from T(0, 0) = 1. (End)
Elementary symmetric function T(4, 2) = sigma^{(3)}_2 = 1*2 + 1*3 + 2*3 = 11. Here the cells (polytopes) are 3 rectangles with total area 11. - _Wolfdieter Lang_, May 28 2017
O.g.f.s of diagonals: d=2 (third diagonal) [0, 6, 50, ...] has D(2,t) = P(2, t)/(1-t)^5, with P(2, t) = 2 + t, the n = 2 row of A288874. - _Wolfdieter Lang_, Jul 20 2017
Boas-Buck recurrence for column k = 2 and n = 5: T(5, 2) = (5!*2/3)*((3/8)*T(2,2)/2! + (5/12)*T(3,2)/3! + (1/2)*T(4,2)/4!) = (5!*2/3)*(3/16 + (5/12)*3/3! + (1/2)*11/4!) = 50. The beta sequence begins: {1/2, 5/12, 3/8, ...}. - _Wolfdieter Lang_, Aug 11 2017
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 31, 187, 441, 996.
  • R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., Table 259, p. 259.
  • Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 149-150

Crossrefs

Essentially a duplicate of A048994. Cf. A008275, A008277, A112007, A130534, A288874, A354795.

Programs

  • Haskell
    a132393 n k = a132393_tabl !! n !! k
    a132393_row n = a132393_tabl !! n
    a132393_tabl = map (map abs) a048994_tabl
    -- Reinhard Zumkeller, Nov 06 2013
    
  • Maple
    a132393_row := proc(n) local k; seq(coeff(expand(pochhammer (x,n)),x,k),k=0..n) end: # Peter Luschny, Nov 28 2010
  • Mathematica
    p[t_] = 1/(1 - t)^x; Table[ ExpandAll[(n!)SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[(n!)* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a] (* Roger L. Bagula, Apr 18 2008 *)
    Flatten[Table[Abs[StirlingS1[n,i]],{n,0,10},{i,0,n}]] (* Harvey P. Dale, Feb 04 2014 *)
  • Maxima
    create_list(abs(stirling1(n,k)),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • PARI
    column(n,k) = my(v1, v2); v1 = vector(n-1, i, 0); v2 = vector(n, i, 0); v2[1] = 1; for(i=1, n-1, v1[i] = (i+k)*(i+k-1)/2*v2[i]; for(j=1, i-1, v1[j] *= (i-j)*(i+k)/(i-j+2)); v2[i+1] = vecsum(v1)/i); v2 \\ generates n first elements of the k-th column starting from the first nonzero element. - Mikhail Kurkov, Mar 05 2025

Formula

T(n,k) = T(n-1,k-1)+(n-1)*T(n-1,k), n,k>=1; T(n,0)=T(0,k); T(0,0)=1.
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000142(n), A001147(n), A007559(n), A007696(n), A008548(n), A008542(n), A045754(n), A045755(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Nov 13 2007
Expand 1/(1-t)^x = Sum_{n>=0}p(x,n)*t^n/n!; then the coefficients of the p(x,n) produce the triangle. - Roger L. Bagula, Apr 18 2008
Sum_{k=0..n} T(n,k)*2^k*x^(n-k) = A000142(n+1), A000165(n), A008544(n), A001813(n), A047055(n), A047657(n), A084947(n), A084948(n), A084949(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Sep 18 2008
a(n) = Sum_{k=0..n} T(n,k)*3^k*x^(n-k) = A001710(n+2), A001147(n+1), A032031(n), A008545(n), A047056(n), A011781(n), A144739(n), A144756(n), A144758(n) for x=1,2,3,4,5,6,7,8,9,respectively. - Philippe Deléham, Sep 20 2008
Sum_{k=0..n} T(n,k)*4^k*x^(n-k) = A001715(n+3), A002866(n+1), A007559(n+1), A047053(n), A008546(n), A049308(n), A144827(n), A144828(n), A144829(n) for x=1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Sep 21 2008
Sum_{k=0..n} x^k*T(n,k) = x*(1+x)*(2+x)*...*(n-1+x), n>=1. - Philippe Deléham, Oct 17 2008
From Wolfdieter Lang, Feb 21 2017: (Start)
E.g.f. k-th column: (-log(1 - x))^k, k >= 0.
E.g.f. triangle (see the Apr 18 2008 Baluga comment): exp(-x*log(1-z)).
E.g.f. a-sequence: x/(1 - exp(-x)). See A164555/A027642. The e.g.f. for the z-sequence is 0. (End)
From Wolfdieter Lang, May 28 2017: (Start)
The row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k, for n >= 0, are R(n, x) = risefac(x,n-1) := Product_{j=0..n-1} x+j, with the empty product for n=0 put to 1. See the Feb 21 2017 comment above. This implies:
T(n, k) = sigma^{(n-1)}_(n-k), for n >= k >= 1, with the elementary symmetric functions sigma^{(n-1)}_m of degree m in the n-1 symbols 1, 2, ..., n-1, with binomial(n-1, m) terms. See an example below.(End)
Boas-Buck type recurrence for column sequence k: T(n, k) = (n!*k/(n - k)) * Sum_{p=k..n-1} beta(n-1-p)*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, and beta(k) = A002208(k+1)/A002209(k+1). See a comment and references in A286718. - Wolfdieter Lang, Aug 11 2017
T(n,k) = Sum_{j=k..n} j^(j-k)*binomial(j-1, k-1)*A354795(n,j) for n > 0. - Mélika Tebni, Mar 02 2023
n-th row polynomial: n!*Sum_{k = 0..2*n} (-1)^k*binomial(-x, k)*binomial(-x, 2*n-k) = n!*Sum_{k = 0..2*n} (-1)^k*binomial(1-x, k)*binomial(-x, 2*n-k). - Peter Bala, Mar 31 2024
From Mikhail Kurkov, Mar 05 2025: (Start)
For a general proof of the formulas below via generating functions, see Mathematics Stack Exchange link.
Recursion for the n-th row (independently of other rows): T(n,k) = 1/(n-k)*Sum_{j=2..n-k+1} binomial(-k,j)*T(n,k+j-1)*(-1)^j for 1 <= k < n with T(n,n) = 1.
Recursion for the k-th column (independently of other columns): T(n,k) = 1/(n-k)*Sum_{j=2..n-k+1} (j-2)!*binomial(n,j)*T(n-j+1,k) for 1 <= k < n with T(n,n) = 1 (see Fedor Petrov link). (End)

A007696 Quartic (or 4-fold) factorial numbers: a(n) = Product_{k = 0..n-1} (4*k + 1).

Original entry on oeis.org

1, 1, 5, 45, 585, 9945, 208845, 5221125, 151412625, 4996616625, 184874815125, 7579867420125, 341094033905625, 16713607661375625, 885821206052908125, 50491808745015763125, 3080000333445961550625, 200200021673987500790625, 13813801495505137554553125
Offset: 0

Views

Author

Keywords

Comments

a(n), n >= 1, enumerates increasing quintic (5-ary) trees. See David Callan's comment on A007559 (number of increasing quarterny trees).
Hankel transform is A169619. - Paul Barry, Dec 03 2009

Examples

			G.f. = 1 + x + 5*x^2 + 45*x^3 + 585*x^4 + 9945*x^5 + 208845*x^6 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A049029(n, 1) for n >= 1 (first column of triangle).

Programs

  • GAP
    a:=[1,1];; for n in [3..20] do a[n]:=(4*(n-1)-7)*(a[n-1]+4*a[n-2]); od; a; # G. C. Greubel, Aug 15 2019
  • Magma
    [n le 2 select 1 else (4*(n-1)-7)*(Self(n-1) + 4*Self(n-2)): n in [1..20]]; // G. C. Greubel, Aug 15 2019
    
  • Maple
    x:='x'; G(x):=(1-4*x)^(-1/4): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: seq(eval(f[n],x=0),n=0..17);# Zerinvary Lajos, Apr 03 2009
    A007696 := n -> mul(k, k = select(k-> k mod 4 = 1, [$ 1 .. 4*n])): seq(A007696(n), n=0..17); # Peter Luschny, Jun 23 2011
  • Mathematica
    a[ n_]:= Pochhammer[ 1/4, n] 4^n; (* Michael Somos, Jan 17 2014 *)
    a[ n_]:= If[n < 0, 1 / Product[ -k, {k, 3, -4n-1, 4}], Product[ k, {k, 1, 4n-3, 4}]]; (* Michael Somos, Jan 17 2014 *)
    Range[0, 19]! CoefficientList[Series[((1-4x)^(-1/4)), {x, 0, 19}], x] (* Vincenzo Librandi, Oct 08 2015 *)
  • Maxima
    A007696(n):=prod(4*k+1,k,0,n-1)$
    makelist(A007696(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    {a(n) = if( n<0, 1 / prod(k=1, -n, 1 - 4*k), prod(k=1, n, 4*k - 3))}; /* Michael Somos, Jan 17 2014 */
    
  • Sage
    [4^n*rising_factorial(1/4, n) for n in (0..20)] # G. C. Greubel, Aug 15 2019
    

Formula

E.g.f.: (1 - 4*x)^(-1/4).
a(n) ~ 2^(1/2) * Pi^(1/2) * Gamma(1/4)^(-1) * n^(-1/4) * 2^(2*n) * e^(-n) * n^n * (1 - 1/96 * n^(-1) - ...). - Joe Keane (jgk(AT)jgk.org), Nov 23 2001 [corrected by Vaclav Kotesovec, Jul 19 2025]
a(n) = Sum_{k = 0..n} (-4)^(n-k) * A048994(n, k). - Philippe Deléham, Oct 29 2005
G.f.: 1/(1 - x/(1 - 4*x/(1 - 5*x/(1 - 8*x/(1 - 9*x/(1 - 12*x/(1 - 13*x/(1 - .../(1 - A042948(n+1)*x/(1 -... (continued fraction). - Paul Barry, Dec 03 2009
a(n) = (-3)^n * Sum_{k = 0..n} (4/3)^k * s(n+1, n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/T(0), where T(k) = 1 - x * (4*k + 1)/(1 - x * (4*k + 4)/T(k+1)) (continued fraction). - Sergei N. Gladkovskii, Mar 19 2013
G.f.: 1 + x/Q(0), where Q(k) = 1 + x + 2*(2*k - 1)*x - 4*x*(k+1)/Q(k+1) (continued fraction). - Sergei N. Gladkovskii, May 03 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x * (4*k + 1)/(x * (4*k + 1) + 1/G(k+1))) (continued fraction). - Sergei N. Gladkovskii, Jun 04 2013
0 = a(n) * (4*a(n+1) - a(n+2)) + a(n+1) * a(n+1) for all n in Z. - Michael Somos, Jan 17 2014
a(-n) = (-1)^n / A008545(n). - Michael Somos, Jan 17 2014
Let T(x) = 1/(1 - 3*x)^(1/3) be the e.g.f. for the sequence of triple factorial numbers A007559. Then the e.g.f. A(x) for the quartic factorial numbers satisfies T(Integral_{t = 0..x} A(t) dt) = A(x). (Cf. A007559 and A008548.) - Peter Bala, Jan 02 2015
O.g.f.: hypergeom([1, 1/4], [], 4*x). - Peter Luschny, Oct 08 2015
a(n) = A264781(4*n+1, n). - Alois P. Heinz, Nov 24 2015
a(n) = 4^n * Gamma(n + 1/4)/Gamma(1/4). - Artur Jasinski, Aug 23 2016
D-finite with recurrence: a(n) +(-4*n+3)*a(n-1)=0, n>=1. - R. J. Mathar, Feb 14 2020
Sum_{n>=0} 1/a(n) = 1 + exp(1/4)*(Gamma(1/4) - Gamma(1/4, 1/4))/(2*sqrt(2)). - Amiram Eldar, Dec 18 2022

Extensions

Better description from Wolfdieter Lang, Dec 11 1999

A008542 Sextuple factorial numbers: Product_{k=0..n-1} (6*k+1).

Original entry on oeis.org

1, 1, 7, 91, 1729, 43225, 1339975, 49579075, 2131900225, 104463111025, 5745471106375, 350473737488875, 23481740411754625, 1714167050058087625, 135419196954588922375, 11510631741140058401875, 1047467488443745314570625, 101604346379043295513350625
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

a(n), n>=1, enumerates increasing heptic (7-ary) trees with n vertices. - Wolfdieter Lang, Sep 14 2007; see a D. Callan comment on A007559 (number of increasing quarterny trees).

Crossrefs

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> (6*k+1) )); # G. C. Greubel, Aug 17 2019
  • Magma
    [1] cat [(&*[(6*k+1): k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 17 2019
    
  • Maple
    a := n -> mul(6*k+1, k=0..n-1);
    G(x):=(1-6*x)^(-1/6): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..15); # Zerinvary Lajos, Apr 03 2009
  • Mathematica
    Table[Product[(6*k+1), {k,0,n-1}], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008, modified by G. C. Greubel, Aug 17 2019 *)
    FoldList[Times, 1, 6Range[0, 20] + 1] (* Vincenzo Librandi, Jun 10 2013 *)
    Table[6^n*Pochhammer[1/6, n], {n,0,20}] (* G. C. Greubel, Aug 17 2019 *)
  • PARI
    a(n)=prod(k=1,n-1,6*k+1) \\ Charles R Greathouse IV, Jul 19 2011
    
  • Sage
    [product((6*k+1) for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 17 2019
    

Formula

E.g.f.: (1-6*x)^(-1/6).
a(n) ~ 2^(1/2)*Pi^(1/2)*Gamma(1/6)^-1*n^(-1/3)*6^n*e^-n*n^n*{1 + 1/72*n^-1 - ...}. - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
a(n) = Sum_{k=0..n} (-6)^(n-k)*A048994(n, k). - Philippe Deléham, Oct 29 2005
G.f.: 1+x/(1-7x/(1-6x/(1-13x/(1-12x/(1-19x/(1-18x/(1-25x/(1-24x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-5)^n*Sum_{k=0..n} (6/5)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/Q(0) where Q(k) = 1 - x*(6*k+1)/(1 - x*(6*k+6)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
a(n) = A085158(6*n-5). - M. F. Hasler, Feb 23 2018
D-finite with recurrence: a(n) +(-6*n+5)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + (e/6^5)^(1/6)*(Gamma(1/6) - Gamma(1/6, 1/6)). - Amiram Eldar, Dec 18 2022

A045754 7-fold factorials: a(n) = Product_{k=0..n-1} (7*k+1).

Original entry on oeis.org

1, 1, 8, 120, 2640, 76560, 2756160, 118514880, 5925744000, 337767408000, 21617114112000, 1534815101952000, 119715577952256000, 10175824125941760000, 936175819586641920000, 92681406139077550080000, 9824229050742220308480000, 1110137882733870894858240000
Offset: 0

Views

Author

Keywords

Crossrefs

See also A113134.
Unsigned row sums of triangle A051186 (scaled Stirling1).
First column of triangle A132056 (S2(8)).

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 7*k+1) ); # G. C. Greubel, Aug 21 2019
  • Magma
    [1] cat [&*[7*j+1: j in [0..n-1]]: n in [1..20]]; // G. C. Greubel, Aug 21 2019
    
  • Maple
    f := n->product( (7*k+1), k=0..(n-1));
    G(x):=(1-7*x)^(-1/7): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..14); # Zerinvary Lajos, Apr 03 2009
  • Mathematica
    FoldList[Times, 1, 7Range[0, 20] + 1] (* Harvey P. Dale, Jan 21 2013 *)
  • PARI
    a(n)=prod(k=0,n-1,7*k+1)
    
  • Sage
    [7^n*rising_factorial(1/7, n) for n in (0..20)] # G. C. Greubel, Aug 21 2019
    

Formula

a(n) = Sum_{k=0..n} (-7)^(n-k)*A048994(n, k), where A048994 = Stirling-1 numbers.
E.g.f.: (1-7*x)^(-1/7).
G.f.: 1/(1-x/(1-7*x/(1-8*x/(1-14*x/(1-15*x/(1-21*x/(1-22*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-6)^n*Sum_{k=0..n} (7/6)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/G(0), where G(k)= 1 - x*(7*k+1)/(1 - x*(7*k+7)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(7*k+1)/(x*(7*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013
a(n) = 7^n * Gamma(n + 1/7) / Gamma(1/7). - Artur Jasinski, Aug 23 2016
a(n) = A114799(7n-6). - M. F. Hasler, Feb 23 2018
D-finite with recurrence: a(n) +(-7*n+6)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + (e/7^6)^(1/7)*(Gamma(1/7) - Gamma(1/7, 1/7)). - Amiram Eldar, Dec 19 2022

Extensions

Additional comments from Philippe Deléham and Paul D. Hanna, Oct 29 2005
Edited by N. J. A. Sloane, Oct 16 2008 at the suggestion of M. F. Hasler, Oct 14 2008
Corrected by Zerinvary Lajos, Apr 03 2009

A049385 Triangle of numbers related to triangle A049375; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297...

Original entry on oeis.org

1, 6, 1, 66, 18, 1, 1056, 372, 36, 1, 22176, 9240, 1200, 60, 1, 576576, 271656, 42840, 2940, 90, 1, 17873856, 9269568, 1685376, 142800, 6090, 126, 1, 643458816, 360847872, 73313856, 7254576, 386400, 11256, 168, 1, 26381811456, 15799069440
Offset: 1

Views

Author

Keywords

Comments

a(n,m) := S2(6; n,m) is the sixth triangle of numbers in the sequence S2(k; n,m), k=1..6: A008277 (unsigned Stirling 2nd kind), A008297 (unsigned Lah), A035342, A035469, A049029, respectively. a(n,1)= A008548(n).
a(n,m) enumerates unordered n-vertex m-forests composed of m plane increasing 6-ary trees. Proof based on the a(n,m) recurrence. See also the F. Bergeron et al. reference, especially Table 1, first row and Example 1 for the e.g.f. for m=1. - Wolfdieter Lang, Sep 14 2007

Examples

			Triangle begins:
  {1};
  {6,1};
  {66,18,1};
  {1056,372,36,1};
  ...
		

Crossrefs

Cf. A049412.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> mul(5*k+1, k=0..n), 9); # Peter Luschny, Jan 28 2016
  • Mathematica
    a[n_, m_] := n!*Coefficient[Series[((-1 + (1 - 5*x)^(-1/5))^m)/m!, {x, 0, n}], x^n];
    Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]][[1 ;; 38]]
    (* Jean-François Alcover, Jun 21 2011, after e.g.f. *)
    rows = 9;
    t = Table[Product[5k+1, {k, 0, n}], {n, 0, rows}];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)

Formula

a(n, m) = n!*A049375(n, m)/(m!*5^(n-m)); a(n+1, m) = (5*n+m)*a(n, m)+ a(n, m-1), n >= m >= 1; a(n, m) := 0, n
a(n, m) = sum(|A051150(n, j)|*S2(j, m), j=m..n) (matrix product), with S2(j, m) := A008277(j, m) (Stirling2 triangle). Priv. comm. to Wolfdieter Lang by E. Neuwirth, Feb 15 2001; see also the 2001 Neuwirth reference. See the general comment on products of Jabotinsky matrices given under A035342.
Showing 1-10 of 60 results. Next