A049375 A convolution triangle of numbers obtained from A034687.
1, 15, 1, 275, 30, 1, 5500, 775, 45, 1, 115500, 19250, 1500, 60, 1, 2502500, 471625, 44625, 2450, 75, 1, 55412500, 11495000, 1254000, 85000, 3625, 90, 1, 1246781250, 279675000, 34093125, 2698875, 143750, 5025, 105, 1, 28398906250, 6802812500
Offset: 1
Examples
{1}; {15,1}; {275,30,1}; {5500,775,45,1}; ...
Links
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Crossrefs
Cf. A039746.
Programs
-
Mathematica
a[n_, m_] := Coefficient[Series[((-1 + (1 - 25*x)^(-1/5))/5)^m, {x, 0, n}], x^n]; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]][[1 ;; 38]] (* Jean-François Alcover, Jun 21 2011, after g.f. *)
Formula
a(n, m) = 5*(5*(n-1)+m)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n
G.f. for m-th column: ((-1+(1-25*x)^(-1/5))/5)^m.
A008548 Quintuple factorial numbers: Product_{k=0..n-1} (5*k+1).
1, 1, 6, 66, 1056, 22176, 576576, 17873856, 643458816, 26381811456, 1213563326976, 61891729675776, 3465936861843456, 211422148572450816, 13953861805781753856, 990724188210504523776, 75295038303998343806976, 6098898102623865848365056, 524505236825652462959394816
Offset: 0
Comments
a(n), n>=1, enumerates increasing sextic (6-ary) trees with n vertices. - Wolfdieter Lang, Sep 14 2007
Hankel transform is A169620. - Paul Barry, Dec 03 2009
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300 (first 50 terms from T. D. Noe)
- Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), Article 00.2.4.
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014-2020.
- Maxie D. Schmidt, Generalized j-Factorial Functions, Polynomials, and Applications , J. Int. Seq. 13 (2010), Article 10.6.7, Table 6.3.
Crossrefs
Programs
-
GAP
List([0..20], n-> Product([0..n], k-> 5*k+1)); # G. C. Greubel, Aug 16 2019
-
Magma
[(&*[5*k+1: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 16 2019
-
Maple
a := n -> mul(5*k+1, k=0..n-1); G(x):=(1-5*x)^(-1/5): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..16); # Zerinvary Lajos, Apr 03 2009 H := hypergeom([1, 1/5], [], 5*x): seq(coeff(series(H,x,20),x,n),n=0..16); # Peter Luschny, Oct 08 2015
-
Mathematica
Table[Product[5k+1,{k,0,n-1}],{n,0,20}] (* Harvey P. Dale, Apr 23 2011 *) FoldList[Times,1,NestList[#+5&,1,20]] (* Ray Chandler, Apr 23 2011 *) FoldList[Times,1,5Range[0, 25] + 1] (* Vincenzo Librandi, Jun 10 2013 *)
-
PARI
x='x+O('x^33); Vec(serlaplace((1-5*x)^(-1/5))) \\ Joerg Arndt, Apr 24 2011
-
PARI
vector(20, n, n--; prod(k=0, n-1, 5*k+1)) \\ Altug Alkan, Oct 08 2015
-
Sage
[product(5*k+1 for k in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 16 2019
Formula
a(n) = A049385(n, 1) (first column of triangle).
E.g.f.: (1-5*x)^(-1/5).
a(n) ~ 2^(1/2)*Pi^(1/2)*gamma(1/5)^-1*n^(-3/10)*5^n*e^-n*n^n*{1 + 1/300*n^-1 - ...}. - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
a(n) = Sum_{k=0..n} (-5)^(n-k)*A048994(n, k). - Philippe Deléham, Oct 29 2005
G.f.: 1/(1-x/(1-5x/(1-6x/(1-10x/(1-11x/(1-15x/(1-16x/(1-20x/(1-21x/(1-25x/(1-.../(1-A008851(n+1)*x/(1-... (continued fraction). - Paul Barry, Dec 03 2009
a(n)=(-4)^n*Sum_{k=0..n} (5/4)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/Q(0) where Q(k) = 1 - x*(5*k+1)/(1 - x*(5*k+5)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - (5*k+1)*x/((5*k+1)*x + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 14 2013
a(n) = (10n-18)*a(n-2) + (5n-6)*a(n-1), n>=2. - Ivan N. Ianakiev, Aug 12 2013
Let T(x) = 1/(1 - 4*x)^(1/4) be the e.g.f. for the sequence of triple factorial numbers A007696. Then the e.g.f. A(x) for the quintuple factorial numbers satisfies T( Integral_{t = 0..x} A(t) dt ) = A(x). Cf. A007559 and A007696. - Peter Bala, Jan 02 2015
O.g.f.: hypergeom([1, 1/5], [], 5*x). - Peter Luschny, Oct 08 2015
a(n) = 5^n * Gamma(n + 1/5) / Gamma(1/5). - Artur Jasinski, Aug 23 2016
D-finite with recurrence: a(n) +(-5*n+4)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + (e/5^4)^(1/5)*(Gamma(1/5) - Gamma(1/5, 1/5)). - Amiram Eldar, Dec 19 2022
A034688 Expansion of (1-25*x)^(-1/5), related to quintic factorial numbers A008548.
1, 5, 75, 1375, 27500, 577500, 12512500, 277062500, 6233906250, 141994531250, 3265874218750, 75708902343750, 1766541054687500, 41445770898437500, 976936028320312500, 23120819336914062500, 549119459251708984375
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- A. Straub, V. H. Moll, T. Amdeberhan, The p-adic valuation of k-central binomial coefficients, Acta Arith. 140 (1) (2009) 31-41, eq (1.10)
Programs
-
GAP
List([0..20], n-> 5^n*Product([0..n-1], k-> 5*k+1)/Factorial(n)); # G. C. Greubel, Aug 17 2019
-
Magma
[1] cat [5^n*(&*[5*k+1: k in [0..n-1]])/Factorial(n): n in [1..20]]; // G. C. Greubel, Aug 17 2019
-
Maple
A034688 := n -> (-25)^n*binomial(-1/5, n): seq(A034688(n), n=0..16); # Peter Luschny, Oct 23 2018
-
Mathematica
Table[(-25)^n*Binomial[-1/5,n], {n,0,20}] (* G. C. Greubel, Aug 17 2019 *) CoefficientList[Series[1/Surd[1-25x,5],{x,0,20}],x] (* Harvey P. Dale, Sep 11 2022 *)
-
PARI
vector(20, n, n--; 5^n*prod(k=0, n-1, 5*k+1)/n!) \\ G. C. Greubel, Aug 17 2019
-
Sage
[5^n*product(5*k+1 for k in (0..n-1))/factorial(n) for n in (0..20)] # G. C. Greubel, Aug 17 2019
Formula
a(n) = (5^n/n!)*A008548(n), n >= 1, a(0) := 1, where A008548(n)=(5*n-4)(!^5) := Product_{j=1..n} (5*j-4).
G.f.: (1-25*x)^(-1/5).
a(n) ~ Gamma(1/5)^-1*n^(-4/5)*5^(2*n)*{1 - 2/25*n^-1 - ...}. - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
a(n) = (-25)^n*binomial(-1/5, n). - Peter Luschny, Oct 23 2018
E.g.f.: L_{-1/5}(25*x), where L_{k}(x) is the Laguerre polynomial. - Stefano Spezia, Aug 17 2019
D-finite with recurrence: n*a(n) +5*(-5*n+4)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
A025750 5th-order Patalan numbers (generalization of Catalan numbers).
1, 1, 10, 150, 2625, 49875, 997500, 20662500, 439078125, 9513359375, 209293906250, 4661546093750, 104884787109375, 2380077861328125, 54401779687500000, 1251240932812500000, 28934946571289062500, 672311993862304687500, 15687279856787109375000, 367412607172119140625000
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seq., Vol. 3 (2000), Article 00.2.4.
- Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
- Thomas M. Richardson, The Super Patalan Numbers, J. Int. Seq. 18 (2015), Article 15.3.3; arXiv preprint, arXiv:1410.5880 [math.CO], 2014.
Programs
-
Mathematica
CoefficientList[Series[(6-(1-25x)^(1/5))/5,{x,0,20}],x] (* Harvey P. Dale, Dec 06 2012 *) a[0] = 1; a[n_] := ((-5)^(n - 1)*Sum[5^(n - k)*StirlingS1[n, k], {k, 1, n}])/n!; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Mar 19 2013, after Vladimir Kruchinin *) a[n_] := 25^(n-1) * Pochhammer[4/5, n-1]/n!; a[0] = 1; Array[a, 20, 0] (* Amiram Eldar, Aug 20 2025 *)
-
Maxima
a(n):=if n=0 then 1 else (sum((-1)^(n-k-1)*binomial(n+k-1,n-1)*sum(2^j*binomial(k,j)*sum(binomial(j,i-j)*binomial(k-j,n-3*(k-j)-i-1)*5^(3*(k-j)+i),i,j,n-k+j-1),j,0,k),k,0,n-1))/(n); /* Vladimir Kruchinin, Dec 10 2011 */
-
Maxima
a(n):=if n=0 then 1 else -binomial(1/5,n)*(-25)^n/5; /* Tani Akinari, Sep 17 2015 */
Formula
G.f.: (6-(1-25*x)^(1/5))/5.
a(n) = 5^(n-1)*4*A034301(n-1)/n!, n >= 2, where 4*A034301(n-1) = (5*n-6)(!^5) = Product_{j=2..n} (5*j-6). - Wolfdieter Lang
a(n) = Sum_{k=0..n-1} (-1)^(n-k-1)*binomial(n+k-1,n-1) * Sum_{j=0..k} 2^j*binomial(k,j) * Sum_{i=j..n-k+j-1} binomial(j,i-j)*binomial(k-j,n-3*(k-j)-i-1)*5^(3*(k-j)+i)/n, n > 0, a(0) = 1. - Vladimir Kruchinin, Dec 10 2011
a(n) = ((-5)^(n-1)*Sum_{k=1..n} (5)^(n-k)*stirling1(n,k))/n!, n>0, a(0) = 1. - Vladimir Kruchinin, Mar 19 2013
From Karol A. Penson, Feb 05 2025: (Start)
a(n) without the initial 1 (i.e., a(n) for n >= 1) is given by
a(n+1) = 5^(2*n)*gamma(n + 4/5)/(gamma(4/5)*(n + 1)!), n >= 0.
a(n+1) = Integral_{x=0..25} x^n*W(x) dx, n >= 0,
where W(x) = sin(Pi/5)*5^(2/5)*(1 - x/25)^(1/5)/(5*Pi*x^(1/5)). W(x) is a positive function on x = (0, 25), is singular at x = 0 with the singularity (x)^(-1/5), and it goes to zero at x = 25. (End)
a(n) ~ 25^(n-1) / (Gamma(4/5) * n^(6/5)). - Amiram Eldar, Aug 20 2025
A034789 Related to sextic factorial numbers A008542.
1, 21, 546, 15561, 466830, 14471730, 458960580, 14801478705, 483514971030, 15955994043990, 530899438190940, 17785131179396490, 599222112044281740, 20287948650642110340, 689790254121831751560, 23539092421907508521985, 805867752326480585870310, 27668126163209166781547310
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..645
- Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
- Index entries for sequences related to factorial numbers.
Programs
-
GAP
List([1..20], n-> 6^(n-1)*Product([1..n], j-> 6*j-5)/Factorial(n) ); # G. C. Greubel, Nov 11 2019
-
Magma
[6^(n-1)*(&*[6*j-5: j in [1..n]])/Factorial(n): n in [1..20]]; // G. C. Greubel, Nov 11 2019
-
Maple
seq( 6^(n-1)*mul(6*j-5, j=1..n)/n!, n=1..20); # G. C. Greubel, Nov 11 2019
-
Mathematica
Rest@ CoefficientList[Series[(-1 + (1 - 36 x)^(-1/6))/6, {x, 0, 16}], x] (* Michael De Vlieger, Oct 13 2019 *) Table[6^(2*n-1)*Pochhammer[1/6, n]/n!, {n, 20}] (* G. C. Greubel, Nov 11 2019 *)
-
PARI
vector(20, n, 6^(n-1)*prod(j=1,n, 6*j-5)/n! ) \\ G. C. Greubel, Nov 11 2019
-
Sage
[6^(n-1)*product( (6*j-5) for j in (1..n))/factorial(n) for n in (1..20)] # G. C. Greubel, Nov 11 2019
Formula
a(n) = 6^(n-1)*A008542(n)/n!.
G.f.: (-1+(1-36*x)^(-1/6))/6.
D-finite with recurrence: n*a(n) + 6*(-6*n+5)*a(n-1) = 0. - R. J. Mathar, Jan 28 2020
a(n) ~ 6^(2*n-1) * n^(-5/6) / Gamma(1/6). - Amiram Eldar, Aug 18 2025
Comments