cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A051691 a(n) = (5*n+10)(!^5)/10(!^5), related to A052562 ((5*n)(!^5) quintic, or 5-factorials).

Original entry on oeis.org

1, 15, 300, 7500, 225000, 7875000, 315000000, 14175000000, 708750000000, 38981250000000, 2338875000000000, 152026875000000000, 10641881250000000000, 798141093750000000000, 63851287500000000000000
Offset: 0

Views

Author

Keywords

Comments

Row m=10 of the array A(6; m,n) := ((5*n+m)(!^5))/m(!^5), m >= 0, n >= 0.

Crossrefs

Cf. A052562, A008548(n+1), A034323(n+1), A034300(n+1), A034301(n+1), A034325(n+1), A051687-A051691 (rows m=0..10).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-5*x)^(15/5))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 14, 5!, 5}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    With[{nn = 30}, CoefficientList[Series[1/(1 - 5*x)^(15/5), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-5*x)^(15/5))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((5*n+10)(!^5))/10(!^5) = A052562(n+2)/(5*10).
E.g.f.: 1/(1-5*x)^3.

A047054 Duplicate of A052562.

Original entry on oeis.org

1, 5, 50, 750, 15000, 375000, 11250000, 393750000, 15750000000, 708750000000
Offset: 0

Views

Author

Keywords

A008548 Quintuple factorial numbers: Product_{k=0..n-1} (5*k+1).

Original entry on oeis.org

1, 1, 6, 66, 1056, 22176, 576576, 17873856, 643458816, 26381811456, 1213563326976, 61891729675776, 3465936861843456, 211422148572450816, 13953861805781753856, 990724188210504523776, 75295038303998343806976, 6098898102623865848365056, 524505236825652462959394816
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

a(n), n>=1, enumerates increasing sextic (6-ary) trees with n vertices. - Wolfdieter Lang, Sep 14 2007
Hankel transform is A169620. - Paul Barry, Dec 03 2009

Crossrefs

Programs

  • GAP
    List([0..20], n-> Product([0..n], k-> 5*k+1)); # G. C. Greubel, Aug 16 2019
  • Magma
    [(&*[5*k+1: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 16 2019
    
  • Maple
    a := n -> mul(5*k+1, k=0..n-1);
    G(x):=(1-5*x)^(-1/5): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..16); # Zerinvary Lajos, Apr 03 2009
    H := hypergeom([1, 1/5], [], 5*x):
    seq(coeff(series(H,x,20),x,n),n=0..16); # Peter Luschny, Oct 08 2015
  • Mathematica
    Table[Product[5k+1,{k,0,n-1}],{n,0,20}]  (* Harvey P. Dale, Apr 23 2011 *)
    FoldList[Times,1,NestList[#+5&,1,20]] (* Ray Chandler, Apr 23 2011 *)
    FoldList[Times,1,5Range[0, 25] + 1] (* Vincenzo Librandi, Jun 10 2013 *)
  • PARI
    x='x+O('x^33); Vec(serlaplace((1-5*x)^(-1/5))) \\ Joerg Arndt, Apr 24 2011
    
  • PARI
    vector(20, n, n--; prod(k=0, n-1, 5*k+1)) \\ Altug Alkan, Oct 08 2015
    
  • Sage
    [product(5*k+1 for k in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 16 2019
    

Formula

a(n) = A049385(n, 1) (first column of triangle).
E.g.f.: (1-5*x)^(-1/5).
a(n) ~ 2^(1/2)*Pi^(1/2)*gamma(1/5)^-1*n^(-3/10)*5^n*e^-n*n^n*{1 + 1/300*n^-1 - ...}. - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
a(n) = Sum_{k=0..n} (-5)^(n-k)*A048994(n, k). - Philippe Deléham, Oct 29 2005
G.f.: 1/(1-x/(1-5x/(1-6x/(1-10x/(1-11x/(1-15x/(1-16x/(1-20x/(1-21x/(1-25x/(1-.../(1-A008851(n+1)*x/(1-... (continued fraction). - Paul Barry, Dec 03 2009
a(n)=(-4)^n*Sum_{k=0..n} (5/4)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/Q(0) where Q(k) = 1 - x*(5*k+1)/(1 - x*(5*k+5)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - (5*k+1)*x/((5*k+1)*x + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 14 2013
a(n) = (10n-18)*a(n-2) + (5n-6)*a(n-1), n>=2. - Ivan N. Ianakiev, Aug 12 2013
Let T(x) = 1/(1 - 4*x)^(1/4) be the e.g.f. for the sequence of triple factorial numbers A007696. Then the e.g.f. A(x) for the quintuple factorial numbers satisfies T( Integral_{t = 0..x} A(t) dt ) = A(x). Cf. A007559 and A007696. - Peter Bala, Jan 02 2015
O.g.f.: hypergeom([1, 1/5], [], 5*x). - Peter Luschny, Oct 08 2015
a(n) = 5^n * Gamma(n + 1/5) / Gamma(1/5). - Artur Jasinski, Aug 23 2016
D-finite with recurrence: a(n) +(-5*n+4)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + (e/5^4)^(1/5)*(Gamma(1/5) - Gamma(1/5, 1/5)). - Amiram Eldar, Dec 19 2022

A008542 Sextuple factorial numbers: Product_{k=0..n-1} (6*k+1).

Original entry on oeis.org

1, 1, 7, 91, 1729, 43225, 1339975, 49579075, 2131900225, 104463111025, 5745471106375, 350473737488875, 23481740411754625, 1714167050058087625, 135419196954588922375, 11510631741140058401875, 1047467488443745314570625, 101604346379043295513350625
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

a(n), n>=1, enumerates increasing heptic (7-ary) trees with n vertices. - Wolfdieter Lang, Sep 14 2007; see a D. Callan comment on A007559 (number of increasing quarterny trees).

Crossrefs

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> (6*k+1) )); # G. C. Greubel, Aug 17 2019
  • Magma
    [1] cat [(&*[(6*k+1): k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 17 2019
    
  • Maple
    a := n -> mul(6*k+1, k=0..n-1);
    G(x):=(1-6*x)^(-1/6): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..15); # Zerinvary Lajos, Apr 03 2009
  • Mathematica
    Table[Product[(6*k+1), {k,0,n-1}], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008, modified by G. C. Greubel, Aug 17 2019 *)
    FoldList[Times, 1, 6Range[0, 20] + 1] (* Vincenzo Librandi, Jun 10 2013 *)
    Table[6^n*Pochhammer[1/6, n], {n,0,20}] (* G. C. Greubel, Aug 17 2019 *)
  • PARI
    a(n)=prod(k=1,n-1,6*k+1) \\ Charles R Greathouse IV, Jul 19 2011
    
  • Sage
    [product((6*k+1) for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 17 2019
    

Formula

E.g.f.: (1-6*x)^(-1/6).
a(n) ~ 2^(1/2)*Pi^(1/2)*Gamma(1/6)^-1*n^(-1/3)*6^n*e^-n*n^n*{1 + 1/72*n^-1 - ...}. - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
a(n) = Sum_{k=0..n} (-6)^(n-k)*A048994(n, k). - Philippe Deléham, Oct 29 2005
G.f.: 1+x/(1-7x/(1-6x/(1-13x/(1-12x/(1-19x/(1-18x/(1-25x/(1-24x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-5)^n*Sum_{k=0..n} (6/5)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/Q(0) where Q(k) = 1 - x*(6*k+1)/(1 - x*(6*k+6)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
a(n) = A085158(6*n-5). - M. F. Hasler, Feb 23 2018
D-finite with recurrence: a(n) +(-6*n+5)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + (e/6^5)^(1/6)*(Gamma(1/6) - Gamma(1/6, 1/6)). - Amiram Eldar, Dec 18 2022

A045754 7-fold factorials: a(n) = Product_{k=0..n-1} (7*k+1).

Original entry on oeis.org

1, 1, 8, 120, 2640, 76560, 2756160, 118514880, 5925744000, 337767408000, 21617114112000, 1534815101952000, 119715577952256000, 10175824125941760000, 936175819586641920000, 92681406139077550080000, 9824229050742220308480000, 1110137882733870894858240000
Offset: 0

Views

Author

Keywords

Crossrefs

See also A113134.
Unsigned row sums of triangle A051186 (scaled Stirling1).
First column of triangle A132056 (S2(8)).

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 7*k+1) ); # G. C. Greubel, Aug 21 2019
  • Magma
    [1] cat [&*[7*j+1: j in [0..n-1]]: n in [1..20]]; // G. C. Greubel, Aug 21 2019
    
  • Maple
    f := n->product( (7*k+1), k=0..(n-1));
    G(x):=(1-7*x)^(-1/7): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..14); # Zerinvary Lajos, Apr 03 2009
  • Mathematica
    FoldList[Times, 1, 7Range[0, 20] + 1] (* Harvey P. Dale, Jan 21 2013 *)
  • PARI
    a(n)=prod(k=0,n-1,7*k+1)
    
  • Sage
    [7^n*rising_factorial(1/7, n) for n in (0..20)] # G. C. Greubel, Aug 21 2019
    

Formula

a(n) = Sum_{k=0..n} (-7)^(n-k)*A048994(n, k), where A048994 = Stirling-1 numbers.
E.g.f.: (1-7*x)^(-1/7).
G.f.: 1/(1-x/(1-7*x/(1-8*x/(1-14*x/(1-15*x/(1-21*x/(1-22*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-6)^n*Sum_{k=0..n} (7/6)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/G(0), where G(k)= 1 - x*(7*k+1)/(1 - x*(7*k+7)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(7*k+1)/(x*(7*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013
a(n) = 7^n * Gamma(n + 1/7) / Gamma(1/7). - Artur Jasinski, Aug 23 2016
a(n) = A114799(7n-6). - M. F. Hasler, Feb 23 2018
D-finite with recurrence: a(n) +(-7*n+6)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + (e/7^6)^(1/7)*(Gamma(1/7) - Gamma(1/7, 1/7)). - Amiram Eldar, Dec 19 2022

Extensions

Additional comments from Philippe Deléham and Paul D. Hanna, Oct 29 2005
Edited by N. J. A. Sloane, Oct 16 2008 at the suggestion of M. F. Hasler, Oct 14 2008
Corrected by Zerinvary Lajos, Apr 03 2009

A008546 Quintuple factorial numbers: Product_{k = 0..n-1} (5*k + 4).

Original entry on oeis.org

1, 4, 36, 504, 9576, 229824, 6664896, 226606464, 8837652096, 388856692224, 19053977918976, 1028914807624704, 60705973649857536, 3885182313590882304, 268077579637770878976, 19837740893195045044224, 1567181530562408558493696, 131643248567242318913470464
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Crossrefs

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 5*k+4 )); # G. C. Greubel, Aug 20 2019
  • Magma
    [1] cat [(&*[5*k+4: k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 20 2019
    
  • Maple
    f:= n-> product(5*k+4, k=0..n-1);
  • Mathematica
    FoldList[Times, 1, 5Range[0, 20] + 4] (* Vincenzo Librandi, Jun 10 2013 *)
    CoefficientList[Series[(1 - 5x)^(-4/5), {x, 0, 20}], x] Range[0, 20]! (* Vaclav Kotesovec, Jan 28 2015 *)
    Table[5^n Pochhammer[4/5, n], {n, 0, 20}] (* G. C. Greubel, Aug 20 2019 *)
  • PARI
    vector(20, n, n--; prod(j=0,n-1, 5*j+4) ) \\ G. C. Greubel, Aug 20 2019
    
  • Sage
    [5^n*rising_factorial(4/5, n) for n in (0..20)] # G. C. Greubel, Aug 20 2019
    

Formula

a(n) = 4*A034301(n) = (5*n - 1)(!^5), n >= 1, with a(0) = 1.
a(n) = A011801(n + 1, 1) (first column of triangle).
a(n) ~ (sqrt(2*Pi)/Gamma(4/5))*n^(n + 3/10)*(5/e)^n*(1 + 1/(300*n) + ...). - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
G.f.: 1/(1 - 4*x/(1 - 5*x/(1 - 9*x/(1 - 10*x/(1 - 14*x/(1 - 15*x/(1 - 19*x/(1 - 20*x/(1 - 24*x/(1 - ... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-1)^n*Sum_{k = 0..n} 5^k*s(n + 1, n + 1 - k), where s(n, k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: ( 1 - 1/Q(0) )/x where Q(k) = 1 - x*(5*k - 1)/(1 - x*(5*k + 5)/Q(k + 1) ); (continued fraction); e.g.f. (1 - 5*x)^(-4/5). - Sergei N. Gladkovskii, Mar 20 2013
G.f.: 1/x - G(0)/(2*x), where G(k) = 1 + 1/(1 - x*(5*k - 1)/(x*(5*k - 1) + 1/G(k + 1))); (continued fraction). - Sergei N. Gladkovskii, May 27 2013
a(n) = 5^n * Gamma(n + 4/5) / Gamma(4/5). - Vaclav Kotesovec, Jan 28 2015
a(n) + (-5*n + 1)*a(n - 1) = 0. - R. J. Mathar, Sep 04 2016
G.f.: 1/(1 - 4*x - 20*x^2/(1 - 14*x - 90*x^2/(1 - 24*x - 210*x^2/(1 - 34*x - 380*x^2/(1 - 44*x - 600*x^2/(1 - 54*x - 870*x^2/(1 - ...))))))) (Jacobi continued fraction). - Nikolaos Pantelidis, Feb 29 2020
Sum_{n>=0} 1/a(n) = 1 + (e/5)^(1/5)*(Gamma(4/5) - Gamma(4/5, 1/5)). - Amiram Eldar, Dec 19 2022

A047055 Quintuple factorial numbers: a(n) = Product_{k=0..n-1} (5*k + 2).

Original entry on oeis.org

1, 2, 14, 168, 2856, 62832, 1696464, 54286848, 2008613376, 84361761792, 3965002804224, 206180145819648, 11752268311719936, 728640635326636032, 48818922566884614144, 3514962424815692218368, 270652106710808300814336, 22193472750286280666775552
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

Hankel transform is A169621. - Paul Barry, Dec 03 2009

Crossrefs

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> (5*k+2) )); # G. C. Greubel, Aug 17 2019
  • Magma
    [1] cat [(&*[(5*k+2): k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 17 2019
    
  • Maple
    a := n->product(5*i+2,i=0..n-1); [seq(a(j),j=0..30)];
  • Mathematica
    Table[5^n*Pochhammer[2/5, n], {n,0,20}] (* G. C. Greubel, Aug 17 2019 *)
    Join[{1},FoldList[Times,5*Range[0,20]+2]] (* Harvey P. Dale, Apr 03 2025 *)
  • PARI
    vector(20, n, n--; prod(k=0,n-1, 5*k+2)) \\ G. C. Greubel, Aug 17 2019
    
  • Sage
    [product((5*k+2) for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 17 2019
    

Formula

E.g.f. (1-5*x)^(-2/5).
a(n) ~ sqrt(2*Pi)/Gamma(2/5)*n^(-1/10)*(5n/e)^n*(1 - (11/300)/n - ...). - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
a(n) = A084940(n)/A000142(n)*A000079(n) = 5^n*Pochhammer(2/5, n) = 5^n*Gamma(n+2/5)*sin(2*Pi/5)*Gamma(3/5)/Pi. - Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
G.f.: 1/(1-2x/(1-5x/(1-7x/(1-10x/(1-12x/(1-15x/(1-17x/(1-20x/(1-22x/(1-25x/(1-.../(1-A047215(n+1)*x/(1-... (continued fraction). - Paul Barry, Dec 03 2009
a(n) = (-3)^n*Sum_{k=0..n} (5/3)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
D-finite with recurrence: a(n) +(-5*n+3)*a(n-1) = 0. - R. J. Mathar, Dec 03 2012
G.f.: 1/G(0) where G(k) = 1 - x*(5*k+2)/( 1 - 5*x*(k+1)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 23 2013
Sum_{n>=0} 1/a(n) = 1 + (e/5^3)^(1/5)*(Gamma(2/5) - Gamma(2/5, 1/5)). - Amiram Eldar, Dec 19 2022

A085157 Quintuple factorials, 5-factorials, n!!!!!, n!5.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 14, 24, 36, 50, 66, 168, 312, 504, 750, 1056, 2856, 5616, 9576, 15000, 22176, 62832, 129168, 229824, 375000, 576576, 1696464, 3616704, 6664896, 11250000, 17873856, 54286848, 119351232, 226606464, 393750000, 643458816
Offset: 0

Views

Author

Hugo Pfoertner, Jun 21 2003

Keywords

Comments

The term "Quintuple factorial numbers" is also used for the sequences A008546, A008548, A052562, A047055, A047056 which have a different definition. The definition given here is the one commonly used.

Examples

			a(12) = 168 because 12*a(12-5) = 12*a(7) = 12*14 = 168.
		

Crossrefs

Cf. n!:A000142, n!!:A006882, n!!!:A007661, n!!!!:A007662, n!!!!!!:A085158, 5-factorial primes: n!!!!!+1:A085148, n!!!!!-1:A085149.
Cf. A288092.

Programs

  • GAP
    a:= function(n)
        if n<1 then return 1;
        else return n*a(n-5);
        fi;
      end;
    List([0..40], n-> a(n) ); # G. C. Greubel, Aug 18 2019
    
  • Magma
    b:= func< n | (n lt 6) select n else n*Self(n-5) >;
    [1] cat [b(n): n in [1..40]]; // G. C. Greubel, Aug 18 2019
    
  • Maple
    a:= n-> `if`(n < 1, 1, n*a(n-5)) end proc; seq(a(n), n = 0..40); # G. C. Greubel, Aug 18 2019
  • Mathematica
    a[n_]:= If[n<1, 1, n*a[n-5]]; Table[a[n], {n,0,40}] (* G. C. Greubel, Aug 18 2019 *)
    Table[Times@@Range[n,1,-5],{n,0,40}] (* Harvey P. Dale, May 12 2020 *)
  • PARI
    a(n)=if(n<1, 1, n*a(n-5))
    for(n=0,50,print1(a(n),",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Oct 19 2006
    
  • Python
    def A085157(n):
        if n <= 0:
            return 1
        else:
            return n*A085157(n-5)
    n = 0
    while n <= 40:
        print(n,A085157(n))
        n = n+1 # A.H.M. Smeets, Aug 18 2019
  • Sage
    def a(n):
        if (n<1): return 1
        else: return n*a(n-5)
    [a(n) for n in (0..40)] # G. C. Greubel, Aug 18 2019
    

Formula

a(n) = 1 for n < 1, otherwise a(n) = n*a(n-5).
Sum_{n>=0} 1/a(n) = A288092. - Amiram Eldar, Nov 10 2020

A051188 Sept-factorial numbers.

Original entry on oeis.org

1, 7, 98, 2058, 57624, 2016840, 84707280, 4150656720, 232436776320, 14643516908160, 1025046183571200, 78928556134982400, 6629998715338521600, 603329883095805465600, 59126328543388935628800
Offset: 0

Views

Author

Keywords

Comments

For n >= 1, a(n) is the order of the wreath product of the symmetric group S_n and the Abelian group (C_7)^n. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 07 2001

Crossrefs

Programs

Formula

a(n) = n!*7^n =: (7*n)(!^7).
a(n) = 7*A034834(n) = Product_{k=1..n} 7*k, n >= 1.
E.g.f.: 1/(1 - 7*x).
G.f.: 1/(1 - 7*x/(1 - 7*x/(1 - 14*x/(1 - 14*x/(1 - 21*x/(1 - 21*x/(1 - 28*x/(1 - 28*x/(1 - ... (continued fraction). - Philippe Deléham, Jan 08 2012
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = e^(1/7) (A092516).
Sum_{n>=0} (-1)^n/a(n) = e^(-1/7) (A092750). (End)

A047056 Quintuple factorial numbers: Product_{k=0..n-1} (5*k+3).

Original entry on oeis.org

1, 3, 24, 312, 5616, 129168, 3616704, 119351232, 4535346816, 195019913088, 9360955828224, 496130658895872, 28775578215960576, 1812861427605516288, 123274577077175107584, 8999044126633782853632, 701925441877435062583296, 58259811675827110194413568
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Crossrefs

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 5*k+3 )); # G. C. Greubel, Aug 20 2019
  • Magma
    [1] cat [(&*[5*k+3: k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 20 2019
    
  • Maple
    seq(mul(5*k+3, k = 0..n-1), n = 0..20); # G. C. Greubel, Aug 20 2019
  • Mathematica
    Table[5^n*Pochhammer[3/5, n], {n,0,20}] (* G. C. Greubel, Aug 20 2019 *)
    Join[{1},FoldList[Times,5*Range[0,20]+3]] (* Harvey P. Dale, Oct 08 2020 *)
  • PARI
    vector(20, n, n--; prod(j=0,n-1, 5*j+3) ) \\ G. C. Greubel, Aug 20 2019
    
  • Sage
    [5^n*rising_factorial(3/5, n) for n in (0..20)] # G. C. Greubel, Aug 20 2019
    

Formula

E.g.f.: (1-5*x)^(-3/5).
a(n) ~ sqrt(2*Pi)/Gamma(3/5)*n^(1/10)*(5*n/e)^n*(1 - 11/300*n^ - 1 + ...). - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
G.f.: 1/(1-3*x/(1-5*x/(1-8*x/(1-10*x/(1-13*x/(1-15*x/(1-18*x/(1-20*x/(1- ... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-2)^n*Sum_{k=0..n} (5/2)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/G(0) where G(k) = 1 - x*(5*k+3)/( 1 - 5*x*(k+1)/G(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Mar 23 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - (5*k+3)*x/((5*k+3)*x + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 14 2013
D-finite with recurrence: a(n) +(-5*n+2)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + (e/5^2)^(1/5)*(Gamma(3/5) - Gamma(3/5, 1/5)). - Amiram Eldar, Dec 19 2022
Showing 1-10 of 24 results. Next