A045754
7-fold factorials: a(n) = Product_{k=0..n-1} (7*k+1).
Original entry on oeis.org
1, 1, 8, 120, 2640, 76560, 2756160, 118514880, 5925744000, 337767408000, 21617114112000, 1534815101952000, 119715577952256000, 10175824125941760000, 936175819586641920000, 92681406139077550080000, 9824229050742220308480000, 1110137882733870894858240000
Offset: 0
Cf. k-fold factorials:
A000142,
A001147 (and
A000165,
A006882),
A007559 (and
A032031,
A008544,
A007661),
A007696 (and
A001813,
A008545,
A047053,
A007662),
A008548 (and
A052562,
A047055,
A085157),
A008542 (and
A085158),
A045755.
Unsigned row sums of triangle
A051186 (scaled Stirling1).
First column of triangle
A132056 (S2(8)).
-
List([0..20], n-> Product([0..n-1], k-> 7*k+1) ); # G. C. Greubel, Aug 21 2019
-
[1] cat [&*[7*j+1: j in [0..n-1]]: n in [1..20]]; // G. C. Greubel, Aug 21 2019
-
f := n->product( (7*k+1), k=0..(n-1));
G(x):=(1-7*x)^(-1/7): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..14); # Zerinvary Lajos, Apr 03 2009
-
FoldList[Times, 1, 7Range[0, 20] + 1] (* Harvey P. Dale, Jan 21 2013 *)
-
a(n)=prod(k=0,n-1,7*k+1)
-
[7^n*rising_factorial(1/7, n) for n in (0..20)] # G. C. Greubel, Aug 21 2019
A084947
a(n) = Product_{i=0..n-1} (7*i+2).
Original entry on oeis.org
1, 2, 18, 288, 6624, 198720, 7352640, 323516160, 16499324160, 956960801280, 62202452083200, 4478576549990400, 353807547449241600, 30427449080634777600, 2829752764499034316800, 282975276449903431680000, 30278354580139667189760000, 3451732422135922059632640000
Offset: 0
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
Cf.
A000079,
A000142,
A000165,
A008544,
A001813,
A045754,
A047055,
A047657,
A084942,
A084947,
A084948,
A084949,
A144739,
A144827,
A049209,
A051188.
-
List([0..20], n-> Product([0..n-1], k-> 7*k+2) ); # G. C. Greubel, Aug 18 2019
-
[ 1 ] cat [ &*[ (7*k+2): k in [0..n-1] ]: n in [1..15] ]; // Klaus Brockhaus, Nov 10 2008
-
a := n->product(7*i+2,i=0..n-1); [seq(a(j),j=0..30)];
-
Join[{1},FoldList[Times,7*Range[0,15]+2]] (* Harvey P. Dale, Nov 27 2015 *)
Table[7^n*Pochhammer[2/7, n], {n,0,15}] (* G. C. Greubel, Aug 18 2019 *)
-
vector(20, n, n--; prod(k=0, n-1, 7*k+2)) \\ G. C. Greubel, Aug 18 2019
-
[product(7*k+2 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 18 2019
A049209
a(n) = -Product_{k=0..n} (7*k-1); sept-factorial numbers.
Original entry on oeis.org
1, 6, 78, 1560, 42120, 1432080, 58715280, 2818333440, 155008339200, 9610517030400, 663125675097600, 50397551307417600, 4182996758515660800, 376469708266409472000, 36517561701841718784000, 3797826416991538753536000, 421558732286060801642496000
Offset: 0
Row sums of triangle
A051186 (scaled Stirling1 triangle).
Sequences of the form m^n*Pochhammer((m-1)/m, n):
A000007 (m=1),
A001147 (m=2),
A008544 (m=3),
A008545 (m=4),
A008546 (m=5),
A008543 (m=6), this sequence (m=7),
A049210 (m=8),
A049211 (m=9),
A049212 (m=10),
A254322 (m=11),
A346896 (m=12).
-
[ -&*[ (7*k-1): k in [0..n-1] ]: n in [1..15] ]; // Klaus Brockhaus, Nov 10 2008
-
CoefficientList[Series[(1-7*x)^(-6/7),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
With[{m=7}, Table[m^n*Pochhammer[(m-1)/m, n], {n, 0, 30}]] (* G. C. Greubel, Feb 16 2022 *)
-
m=7; [m^n*rising_factorial((m-1)/m, n) for n in (0..30)] # G. C. Greubel, Feb 16 2022
A051189
Octo-factorial numbers.
Original entry on oeis.org
1, 8, 128, 3072, 98304, 3932160, 188743680, 10569646080, 676457349120, 48704929136640, 3896394330931200, 342882701121945600, 32916739307706777600, 3423340888001504870400, 383414179456168545484800
Offset: 0
Shifted absolute values are column 1 of
A051187.
A144739
7-factorial numbers A114799(7*n+3): Partial products of A017017(k) = 7*k+3, a(0) = 1.
Original entry on oeis.org
1, 3, 30, 510, 12240, 379440, 14418720, 648842400, 33739804800, 1990648483200, 131382799891200, 9590944392057600, 767275551364608000, 66752972968720896000, 6274779459059764224000, 633752725365036186624000, 68445294339423908155392000, 7871208849033749437870080000
Offset: 0
a(0)=1, a(1)=3, a(2)=3*10=30, a(3)=3*10*17=510, a(4)=3*10*17*24=12240, ...
Cf.
A114799,
A001710,
A001147,
A032031,
A008545,
A047056,
A011781,
A045754,
A084947,
A144827,
A147585,
A049209,
A051188.
-
List([0..20], n-> Product([0..n-1], k-> 7*k+3) ); # G. C. Greubel, Aug 19 2019
-
[ 1 ] cat [ &*[ (7*k+3): k in [0..n] ]: n in [0..20] ]; // Klaus Brockhaus, Nov 10 2008
-
a:= n-> product(7*j+3, j=0..n-1); seq(a(n), n=0..20); # G. C. Greubel, Aug 19 2019
-
Table[7^n*Pochhammer[3/7, n], {n,0,20}] (* G. C. Greubel, Aug 19 2019 *)
-
a(n)=prod(i=1,n,7*i-4) \\ Charles R Greathouse IV, Jul 02 2013
-
[product(7*k+3 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 19 2019
A144827
Partial products of successive terms of A017029; a(0)=1.
Original entry on oeis.org
1, 4, 44, 792, 19800, 633600, 24710400, 1136678400, 60243955200, 3614637312000, 242180699904000, 17921371792896000, 1451631115224576000, 127743538139762688000, 12135636123277455360000, 1237834884574300446720000, 134924002418598748692480000, 15651184280557454848327680000
Offset: 0
a(0)=1, a(1)=4, a(2)=4*11=44, a(3)=4*11*18=792, a(4)=4*11*18*25=19800, ...
-
[ 1 ] cat [ &*[ (7*k+4): k in [0..n] ]: n in [0..14] ]; // Klaus Brockhaus, Nov 10 2008
-
FoldList[Times,1,Range[4,150,7]] (* Harvey P. Dale, Apr 25 2014 *)
-
[1]+[4*7^(n-1)*rising_factorial(11/7, n-1) for n in (1..30)] # G. C. Greubel, Feb 22 2022
A034834
One seventh of sept-factorial numbers.
Original entry on oeis.org
1, 14, 294, 8232, 288120, 12101040, 592950960, 33205253760, 2091930986880, 146435169081600, 11275508019283200, 947142673619788800, 86189983299400780800, 8446618363341276518400, 886894928150834034432000, 99332231952893411856384000, 11820535602394316010909696000
Offset: 1
-
[7^(n-1)*Factorial(n): n in [1..30]]; // G. C. Greubel, Feb 22 2018
-
Table[7^(n-1)*n!, {n,1,30}] (* or *) Drop[With[{nn = 50},CoefficientList[ Series[x/(1-7*x), {x, 0, nn}], x]*Range[0, nn]!], 1] (* G. C. Greubel, Feb 22 2018 *)
-
my(x='x+O('x^30)); Vec(serlaplace(x/(1-7*x))) \\ G. C. Greubel, Feb 22 2018
A051232
9-factorial numbers.
Original entry on oeis.org
1, 9, 162, 4374, 157464, 7085880, 382637520, 24106163760, 1735643790720, 140587147048320, 12652843234348800, 1252631480200531200, 135284199861657369600, 15828251383813912243200, 1994359674360552942643200, 269238556038674647256832000
Offset: 0
-
[9^n*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 05 2011
-
with(combstruct):A:=[N,{N=Cycle(Union(Z$9))},labeled]: seq(count(A,size=n+1)/9, n=0..14); # Zerinvary Lajos, Dec 05 2007
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 8, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
A147585
a(1) = 1; a(n) = (7*n-9)*a(n-1) for n > 1.
Original entry on oeis.org
1, 5, 60, 1140, 29640, 978120, 39124800, 1838865600, 99298742400, 6057223286400, 411891183475200, 30891838760640000, 2533130778372480000, 225448639275150720000, 21643069370414469120000, 2229236145152690319360000, 245215975966795935129600000, 28690269188115124410163200000
Offset: 1
-
[ n eq 1 select 1 else Self(n-1)*(7*n-9): n in [1..15] ]; // Klaus Brockhaus, Nov 10 2008
-
[ 1 ] cat [ &*[ (5+7*k): k in [0..n-1] ]: n in [1..14] ]; // Klaus Brockhaus, Nov 10 2008
-
seq( -7^n*pochhammer(-2/7, n)/2, n = 1..15); # G. C. Greubel, Dec 03 2019
-
Table[-7^n*Pochhammer[-2/7, n]/2, {n, 15}] (* G. C. Greubel, Dec 03 2019 *)
-
{for(n=1, 15, print1(prod(k=1, n-1, 7*k-2,), ","))} \\ Klaus Brockhaus, Nov 10 2008
-
[-7^n*rising_factorial(-2/7, n)/2 for n in (1..15)] # G. C. Greubel, Dec 03 2019
A051186
Generalized Stirling number triangle of first kind.
Original entry on oeis.org
1, -7, 1, 98, -21, 1, -2058, 539, -42, 1, 57624, -17150, 1715, -70, 1, -2016840, 657874, -77175, 4165, -105, 1, 84707280, -29647548, 3899224, -252105, 8575, -147, 1, -4150656720, 1537437132, -220709524, 16252369, -672280, 15778, -196, 1
Offset: 1
Triangle T(n,m) (with rows n >= 1 and columns m = 1..n) begins:
1;
-7, 1;
98, -21, 1;
-2058, 539, -42, 1;
57624, -17150, 1715, -70, 1;
-2016840, 657874, -77175, 4165, -105, 1;
...
3rd row o.g.f.: E(3,x) = Product_{j=0..2} (x - 7*j) = 98*x - 21*x^2 + x^3.
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- Wolfdieter Lang, First ten rows.
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur les nombres de Stirling et les nombres de Bernoulli d'ordre supérieur, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 43 (1960), 1-63.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur une classe de nombres se rattachant aux nombres de Stirling--Appendice: Table des nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 60 (1961), 1-15 and 17-62.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77 [jstor stable version].
-
[7^(n-k)*StirlingFirst(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 22 2022
-
Table[7^(n-k)*StirlingS1[n, k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Feb 22 2022 *)
-
flatten([[(-7)^(n-k)*stirling_number1(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 22 2022
Showing 1-10 of 17 results.
Comments