cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A045754 7-fold factorials: a(n) = Product_{k=0..n-1} (7*k+1).

Original entry on oeis.org

1, 1, 8, 120, 2640, 76560, 2756160, 118514880, 5925744000, 337767408000, 21617114112000, 1534815101952000, 119715577952256000, 10175824125941760000, 936175819586641920000, 92681406139077550080000, 9824229050742220308480000, 1110137882733870894858240000
Offset: 0

Views

Author

Keywords

Crossrefs

See also A113134.
Unsigned row sums of triangle A051186 (scaled Stirling1).
First column of triangle A132056 (S2(8)).

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 7*k+1) ); # G. C. Greubel, Aug 21 2019
  • Magma
    [1] cat [&*[7*j+1: j in [0..n-1]]: n in [1..20]]; // G. C. Greubel, Aug 21 2019
    
  • Maple
    f := n->product( (7*k+1), k=0..(n-1));
    G(x):=(1-7*x)^(-1/7): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..14); # Zerinvary Lajos, Apr 03 2009
  • Mathematica
    FoldList[Times, 1, 7Range[0, 20] + 1] (* Harvey P. Dale, Jan 21 2013 *)
  • PARI
    a(n)=prod(k=0,n-1,7*k+1)
    
  • Sage
    [7^n*rising_factorial(1/7, n) for n in (0..20)] # G. C. Greubel, Aug 21 2019
    

Formula

a(n) = Sum_{k=0..n} (-7)^(n-k)*A048994(n, k), where A048994 = Stirling-1 numbers.
E.g.f.: (1-7*x)^(-1/7).
G.f.: 1/(1-x/(1-7*x/(1-8*x/(1-14*x/(1-15*x/(1-21*x/(1-22*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-6)^n*Sum_{k=0..n} (7/6)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/G(0), where G(k)= 1 - x*(7*k+1)/(1 - x*(7*k+7)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(7*k+1)/(x*(7*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013
a(n) = 7^n * Gamma(n + 1/7) / Gamma(1/7). - Artur Jasinski, Aug 23 2016
a(n) = A114799(7n-6). - M. F. Hasler, Feb 23 2018
D-finite with recurrence: a(n) +(-7*n+6)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + (e/7^6)^(1/7)*(Gamma(1/7) - Gamma(1/7, 1/7)). - Amiram Eldar, Dec 19 2022

Extensions

Additional comments from Philippe Deléham and Paul D. Hanna, Oct 29 2005
Edited by N. J. A. Sloane, Oct 16 2008 at the suggestion of M. F. Hasler, Oct 14 2008
Corrected by Zerinvary Lajos, Apr 03 2009

A084947 a(n) = Product_{i=0..n-1} (7*i+2).

Original entry on oeis.org

1, 2, 18, 288, 6624, 198720, 7352640, 323516160, 16499324160, 956960801280, 62202452083200, 4478576549990400, 353807547449241600, 30427449080634777600, 2829752764499034316800, 282975276449903431680000, 30278354580139667189760000, 3451732422135922059632640000
Offset: 0

Views

Author

Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003

Keywords

Crossrefs

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 7*k+2) ); # G. C. Greubel, Aug 18 2019
  • Magma
    [ 1 ] cat [ &*[ (7*k+2): k in [0..n-1] ]: n in [1..15] ]; // Klaus Brockhaus, Nov 10 2008
    
  • Maple
    a := n->product(7*i+2,i=0..n-1); [seq(a(j),j=0..30)];
  • Mathematica
    Join[{1},FoldList[Times,7*Range[0,15]+2]] (* Harvey P. Dale, Nov 27 2015 *)
    Table[7^n*Pochhammer[2/7, n], {n,0,15}] (* G. C. Greubel, Aug 18 2019 *)
  • PARI
    vector(20, n, n--; prod(k=0, n-1, 7*k+2)) \\ G. C. Greubel, Aug 18 2019
    
  • Sage
    [product(7*k+2 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 18 2019
    

Formula

a(n) = A084942(n)/A000142(n)*A000079(n) = 7^n*Pochhammer(2/7, n) = 7^n*Gamma(n+2/7)/Gamma(2/7).
D-finite with recurrence a(0) = 1; a(n) = (7*n - 5)*a(n-1) for n > 0. - Klaus Brockhaus, Nov 10 2008
G.f.: 1/(1-2*x/(1-7*x/(1-9*x/(1-14*x/(1-16*x/(1-21*x/(1-23*x/(1-28*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-5)^n*Sum_{k=0..n} (7/5)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
From Ilya Gutkovskiy, Mar 23 2017: (Start)
E.g.f.: 1/(1 - 7*x)^(2/7).
a(n) ~ sqrt(2*Pi)*7^n*n^n/(exp(n)*n^(3/14)*Gamma(2/7)). (End)
Sum_{n>=0} 1/a(n) = 1 + (e/7^5)^(1/7)*(Gamma(2/7) - Gamma(2/7, 1/7)). - Amiram Eldar, Dec 19 2022

Extensions

a(15) from Klaus Brockhaus, Nov 10 2008

A049209 a(n) = -Product_{k=0..n} (7*k-1); sept-factorial numbers.

Original entry on oeis.org

1, 6, 78, 1560, 42120, 1432080, 58715280, 2818333440, 155008339200, 9610517030400, 663125675097600, 50397551307417600, 4182996758515660800, 376469708266409472000, 36517561701841718784000, 3797826416991538753536000, 421558732286060801642496000
Offset: 0

Views

Author

Keywords

Crossrefs

Row sums of triangle A051186 (scaled Stirling1 triangle).
Sequences of the form m^n*Pochhammer((m-1)/m, n): A000007 (m=1), A001147 (m=2), A008544 (m=3), A008545 (m=4), A008546 (m=5), A008543 (m=6), this sequence (m=7), A049210 (m=8), A049211 (m=9), A049212 (m=10), A254322 (m=11), A346896 (m=12).

Programs

  • Magma
    [ -&*[ (7*k-1): k in [0..n-1] ]: n in [1..15] ]; // Klaus Brockhaus, Nov 10 2008
    
  • Mathematica
    CoefficientList[Series[(1-7*x)^(-6/7),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
    With[{m=7}, Table[m^n*Pochhammer[(m-1)/m, n], {n, 0, 30}]] (* G. C. Greubel, Feb 16 2022 *)
  • Sage
    m=7; [m^n*rising_factorial((m-1)/m, n) for n in (0..30)] # G. C. Greubel, Feb 16 2022

Formula

a(n) = 6*A034833(n) = (7*n-1)*(!^7), n >= 1, a(0) := 1.
a(n) = Product_{k=1..n} (7*k - 1). a(0) = 1; a(n) = (7*n - 1)*a(n-1) for n > 0. - Klaus Brockhaus, Nov 10 2008
G.f.: 1/(1-6*x/(1-7*x/(1-13*x/(1-14*x/(1-20*x/(1-21*x/(1-27*x/(1-28*x/(1-...(continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-1)^n*Sum_{k=0..n} 7^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
a(n) = 7^n * Gamma(n+6/7) / Gamma(6/7). - Vaclav Kotesovec, Jan 28 2015
E.g.f.: (1-7*x)^(-6/7). - Vaclav Kotesovec, Jan 28 2015
From Nikolaos Pantelidis, Dec 19 2020: (Start)
G.f.: 1/G(0) where G(k) = 1 - (14*k+6)*x - 7*(k+1)*(7*k+6)*x^2/G(k+1); (continued fraction).
which starts as 1/(1-6*x-42*x^2/(1-20*x-182*x^2/(1-34*x-420*x^2/(1-48*x-756*x^2/(1-62*x-1190*x^2/(1-... )))))) (Jacobi continued fraction).
G.f.: 1/Q(0) where Q(k) = 1 - (7*k+6)*x/(1 - (7*k+7)*x/Q(k+1) ); (continued fraction). (End)
Sum_{n>=0} 1/a(n) = 1 + (e/7)^(1/7)*(Gamma(6/7) - Gamma(6/7, 1/7)). - Amiram Eldar, Dec 19 2022

A051189 Octo-factorial numbers.

Original entry on oeis.org

1, 8, 128, 3072, 98304, 3932160, 188743680, 10569646080, 676457349120, 48704929136640, 3896394330931200, 342882701121945600, 32916739307706777600, 3423340888001504870400, 383414179456168545484800
Offset: 0

Views

Author

Keywords

Comments

For n >= 1, a(n) is the order of the wreath product of the symmetric group S_n and the Abelian group (C_8)^n. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 07 2001
Number of n X n monomial matrices whose nonzero entries are unit quaternions.
Number of ways of reassembling n slices of toast or of binding n square pages. - Donald S. McDonald, Sep 24 2005

Crossrefs

Shifted absolute values are column 1 of A051187.

Programs

  • Magma
    [8^n*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 05 2011
    
  • Mathematica
    Table[n! 8^n,{n,0,20}] (* Harvey P. Dale, Aug 14 2021 *)
  • SageMath
    [8^n*factorial(n) for n in range(40)] # G. C. Greubel, Oct 21 2022

Formula

a(n) = 8*A034976(n) = Product_{k=1..n} 8*k, n >= 1; a(0) = 1.
a(n) = n!*8^n.
E.g.f.: 1/(1-8*x).
G.f.: 1/(1 - 8*x/(1 - 8*x/(1 - 16*x/(1 - 16*x/(1 - 24*x/(1 - 24*x/(1 - 32*x/(1 - 32*x/(1 - ... (continued fraction). - Philippe Deléham, Jan 07 2012
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = e^(1/8).
Sum_{n>=0} (-1)^n/a(n) = e^(-1/8). (End)

A144739 7-factorial numbers A114799(7*n+3): Partial products of A017017(k) = 7*k+3, a(0) = 1.

Original entry on oeis.org

1, 3, 30, 510, 12240, 379440, 14418720, 648842400, 33739804800, 1990648483200, 131382799891200, 9590944392057600, 767275551364608000, 66752972968720896000, 6274779459059764224000, 633752725365036186624000, 68445294339423908155392000, 7871208849033749437870080000
Offset: 0

Views

Author

Philippe Deléham, Sep 20 2008

Keywords

Examples

			a(0)=1, a(1)=3, a(2)=3*10=30, a(3)=3*10*17=510, a(4)=3*10*17*24=12240, ...
		

Crossrefs

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 7*k+3) ); # G. C. Greubel, Aug 19 2019
  • Magma
    [ 1 ] cat [ &*[ (7*k+3): k in [0..n] ]: n in [0..20] ]; // Klaus Brockhaus, Nov 10 2008
    
  • Maple
    a:= n-> product(7*j+3, j=0..n-1); seq(a(n), n=0..20); # G. C. Greubel, Aug 19 2019
  • Mathematica
    Table[7^n*Pochhammer[3/7, n], {n,0,20}] (* G. C. Greubel, Aug 19 2019 *)
  • PARI
    a(n)=prod(i=1,n,7*i-4) \\ Charles R Greathouse IV, Jul 02 2013
    
  • Sage
    [product(7*k+3 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 19 2019
    

Formula

a(n) = Sum_{k=0..n} A132393(n,k)*3^k*7^(n-k).
G.f.: 1/(1-3*x/(1-7*x/(1-10*x/(1-14*x/(1-17*x/(1-21*x/(1-24*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-4)^n*Sum_{k=0..n} (7/4)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
From Ilya Gutkovskiy, Mar 23 2017: (Start)
E.g.f.: 1/(1 - 7*x)^(3/7).
a(n) ~ sqrt(2*Pi)*7^n*n^n/(exp(n)*n^(1/14)*Gamma(3/7)). (End)
a(n) = A114799(7*n-4). - M. F. Hasler, Feb 23 2018
D-finite with recurrence: a(n) +(-7*n+4)*a(n-1)=0. - R. J. Mathar, Feb 21 2020
Sum_{n>=0} 1/a(n) = 1 + (e/7^4)^(1/7)*(Gamma(3/7) - Gamma(3/7, 1/7)). - Amiram Eldar, Dec 19 2022

A144827 Partial products of successive terms of A017029; a(0)=1.

Original entry on oeis.org

1, 4, 44, 792, 19800, 633600, 24710400, 1136678400, 60243955200, 3614637312000, 242180699904000, 17921371792896000, 1451631115224576000, 127743538139762688000, 12135636123277455360000, 1237834884574300446720000, 134924002418598748692480000, 15651184280557454848327680000
Offset: 0

Views

Author

Philippe Deléham, Sep 21 2008

Keywords

Examples

			a(0)=1, a(1)=4, a(2)=4*11=44, a(3)=4*11*18=792, a(4)=4*11*18*25=19800, ...
		

Crossrefs

Programs

  • Magma
    [ 1 ] cat [ &*[ (7*k+4): k in [0..n] ]: n in [0..14] ]; // Klaus Brockhaus, Nov 10 2008
    
  • Mathematica
    FoldList[Times,1,Range[4,150,7]] (* Harvey P. Dale, Apr 25 2014 *)
  • SageMath
    [1]+[4*7^(n-1)*rising_factorial(11/7, n-1) for n in (1..30)] # G. C. Greubel, Feb 22 2022

Formula

a(n) = Sum_{k=0..n} A132393(n,k)*4^k*7^(n-k).
G.f.: 1/(1-4*x/(1-7*x/(1-11*x/(1-14*x/(1-18*x/(1-21*x/(1-25*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-3)^n*Sum_{k=0..n} (7/3)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
From Ilya Gutkovskiy, Mar 23 2017: (Start)
E.g.f.: 1/(1 - 7*x)^(4/7).
a(n) ~ sqrt(2*Pi)*7^n*n^(n+1/14)/(exp(n)*Gamma(4/7)). (End)
a(n) = 4*7^(n-1)*Pochhammer(n-1, 11/7) with a(0) = 1. - G. C. Greubel, Feb 22 2022
Sum_{n>=0} 1/a(n) = 1 + (e/7^3)^(1/7)*(Gamma(4/7) - Gamma(4/7, 1/7)). - Amiram Eldar, Dec 19 2022

Extensions

Corrected a(9) by Vincenzo Librandi, Jul 14 2011

A034834 One seventh of sept-factorial numbers.

Original entry on oeis.org

1, 14, 294, 8232, 288120, 12101040, 592950960, 33205253760, 2091930986880, 146435169081600, 11275508019283200, 947142673619788800, 86189983299400780800, 8446618363341276518400, 886894928150834034432000, 99332231952893411856384000, 11820535602394316010909696000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [7^(n-1)*Factorial(n): n in [1..30]]; // G. C. Greubel, Feb 22 2018
  • Mathematica
    Table[7^(n-1)*n!, {n,1,30}] (* or *) Drop[With[{nn = 50},CoefficientList[ Series[x/(1-7*x), {x, 0, nn}], x]*Range[0, nn]!], 1] (* G. C. Greubel, Feb 22 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(x/(1-7*x))) \\ G. C. Greubel, Feb 22 2018
    

Formula

7*a(n) = (7*n)(!^7) = Product_{j=1..n} 7*j = 7^n*n!.
E.g.f.: x/(1-7*x).
a(n) = A051188(n)/7.
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 7*(exp(1/7)-1).
Sum_{n>=1} (-1)^(n+1)/a(n) = 7*(1-exp(-1/7)). (End)

Extensions

More terms from G. C. Greubel, Feb 22 2018

A051232 9-factorial numbers.

Original entry on oeis.org

1, 9, 162, 4374, 157464, 7085880, 382637520, 24106163760, 1735643790720, 140587147048320, 12652843234348800, 1252631480200531200, 135284199861657369600, 15828251383813912243200, 1994359674360552942643200, 269238556038674647256832000
Offset: 0

Views

Author

Keywords

Comments

For n >= 1, a(n) is the order of the wreath product of the symmetric group S_n and the Abelian group (C_9)^n. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 07 2001
a(n) = 9*A035023(n) = Product_{k=1..n} 9*k, n >= 1; a(0) := 1.
Pi^n/a(n) is the volume of a 2n-dimensional ball with radius 1/3. - Peter Luschny, Jul 24 2012

Crossrefs

Cf. A047058, A051188, A051189. a(n) = A051231(n-1, 0), A053116 (first column of triangle).

Programs

  • Magma
    [9^n*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 05 2011
  • Maple
    with(combstruct):A:=[N,{N=Cycle(Union(Z$9))},labeled]: seq(count(A,size=n+1)/9, n=0..14); # Zerinvary Lajos, Dec 05 2007
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 8, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)

Formula

a(n) = n!*9^n =: (9*n)(!^9).
E.g.f.: 1/(1-9*x).
G.f.: 1/(1 - 9*x/(1 - 9*x/(1 - 18*x/(1 - 18*x/(1 - 27*x/(1 - 27*x/(1 - ...))))))), a continued fraction. - Ilya Gutkovskiy, Aug 09 2017
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = e^(1/9).
Sum_{n>=0} (-1)^n/a(n) = e^(-1/9). (End)

A147585 a(1) = 1; a(n) = (7*n-9)*a(n-1) for n > 1.

Original entry on oeis.org

1, 5, 60, 1140, 29640, 978120, 39124800, 1838865600, 99298742400, 6057223286400, 411891183475200, 30891838760640000, 2533130778372480000, 225448639275150720000, 21643069370414469120000, 2229236145152690319360000, 245215975966795935129600000, 28690269188115124410163200000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [ n eq 1 select 1 else Self(n-1)*(7*n-9): n in [1..15] ]; // Klaus Brockhaus, Nov 10 2008
    
  • Magma
    [ 1 ] cat [ &*[ (5+7*k): k in [0..n-1] ]: n in [1..14] ]; // Klaus Brockhaus, Nov 10 2008
    
  • Maple
    seq( -7^n*pochhammer(-2/7, n)/2, n = 1..15); # G. C. Greubel, Dec 03 2019
  • Mathematica
    Table[-7^n*Pochhammer[-2/7, n]/2, {n, 15}] (* G. C. Greubel, Dec 03 2019 *)
  • PARI
    {for(n=1, 15, print1(prod(k=1, n-1, 7*k-2,), ","))} \\ Klaus Brockhaus, Nov 10 2008
    
  • Sage
    [-7^n*rising_factorial(-2/7, n)/2 for n in (1..15)] # G. C. Greubel, Dec 03 2019

Formula

a(n) = Product_{k=1..n-1} (7*k - 2). - Klaus Brockhaus, Nov 10 2008
a(n) = (5*7^(n-1)*Gamma(5/7+n))/Gamma(12/7). - Klaus Brockhaus, Nov 10 2008
a(n+1) = Sum_{k=0..n} A132393(n,k)*5^k*7^(n-k). - Philippe Deléham, Nov 09 2008
G.f.: x/(1-5x/(1-7x/(1-12x/(1-14x/(1-19x/(1-21x/(1-26x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-2)^n*Sum_{k=0..n} (7/2)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
Sum_{n>=1} 1/a(n) = 1 + (e/7^2)^(1/7)*(Gamma(5/7) - Gamma(5/7, 1/7)). - Amiram Eldar, Dec 19 2022

Extensions

Edited by Klaus Brockhaus, Nov 10 2008

A051186 Generalized Stirling number triangle of first kind.

Original entry on oeis.org

1, -7, 1, 98, -21, 1, -2058, 539, -42, 1, 57624, -17150, 1715, -70, 1, -2016840, 657874, -77175, 4165, -105, 1, 84707280, -29647548, 3899224, -252105, 8575, -147, 1, -4150656720, 1537437132, -220709524, 16252369, -672280, 15778, -196, 1
Offset: 1

Views

Author

Keywords

Comments

T(n,m) = R_n^m(a=0, b=7) in the notation of the given 1962 reference.
T(n,m) is a Jabotinsky matrix, i.e., the monic row polynomials E(n,x) := Sum_{m=1..n} T(n,m)*x^m = Product_{j=0..n-1} (x-7*j), n >= 1, and E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
From Petros Hadjicostas, Jun 07 2020: (Start)
For integers n, m >= 0 and complex numbers a, b (with b <> 0), the numbers R_n^m(a,b) were introduced by Mitrinovic (1961) and further examined by Mitrinovic and Mitrinovic (1962).
They are defined via Product_{r=0..n-1} (x - (a + b*r)) = Sum_{m=0..n} R_n^m(a,b)*x^m for n >= 0. As a result, R_n^m(a,b) = R_{n-1}^{m-1}(a,b) - (a + b*(n-1))*R_{n-1}^m(a,b) for n >= m >= 1 with R_1^0(a,b) = a, R_1^1(a,b) = 1, R_n^m(a,b) = 0 for n < m, and R_0^0(a,b) = 1.
With a = 0 and b = 1, we get the Stirling numbers of the first kind S1(n,m) = R_n^m(a=0, b=1) = A048994(n,m).
We have R_n^m(a,b) = Sum_{k=0}^{n-m} (-1)^k * a^k * b^(n-m-k) * binomial(m+k, k) * S1(n, m+k) for n >= m >= 0.
For the current array, T(n,m) = R_n^m(a=0, b=7) but with no zero row or column. (End)

Examples

			Triangle T(n,m) (with rows n >= 1 and columns m = 1..n) begins:
         1;
        -7,      1;
        98,    -21,      1;
     -2058,    539,    -42,    1;
     57624, -17150,   1715,  -70,    1;
  -2016840, 657874, -77175, 4165, -105, 1;
  ...
3rd row o.g.f.: E(3,x) = Product_{j=0..2} (x - 7*j) = 98*x - 21*x^2 + x^3.
		

Crossrefs

Cf. A000142, A045754 (unsigned row sums), A049209 (row sums), A051188.
The b=1..6 triangles are: A008275 (Stirling1 triangle), A039683, A051141, A051142, A051150, A051151.

Programs

  • Magma
    [7^(n-k)*StirlingFirst(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 22 2022
    
  • Mathematica
    Table[7^(n-k)*StirlingS1[n, k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Feb 22 2022 *)
  • Sage
    flatten([[(-7)^(n-k)*stirling_number1(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 22 2022

Formula

T(n, m) = T(n-1, m-1) - 7*(n-1)*T(n-1, m) for n >= m >= 1, T(n, m) = 0 for n < m, T(n, 0) = 0 for n >= 1, and T(0, 0) = 1.
T(n, 1) = A051188(n-1).
Sum_{k=0..n} T(n, k) = (-1)^(n-1)*A049209(n-1).
Sum_{k=0..n} (-1)^(n-k)*T(n, k) = A045754(n).
E.g.f. for m-th column of signed triangle: (log(1 + 7*x)/7)^m/m!.
T(n,m) = 7^(n-m)*S1(n,m) with the (signed) Stirling1 triangle S1(n,m) = A008275(n,m).
Bivariate e.g.f.-o.g.f.: Sum_{n,m >= 1} T(n,m)*x^n*y^m/n! = exp((y/7)*log(1 + 7*x)) - 1 = (1 + 7*x)^(y/7) - 1. - Petros Hadjicostas, Jun 07 2020
T(n, 0) = (-7)^(n-1)*A000142(n-1). - G. C. Greubel, Feb 22 2022
Showing 1-10 of 17 results. Next