cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A132393 Triangle of unsigned Stirling numbers of the first kind (see A048994), read by rows, T(n,k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 6, 11, 6, 1, 0, 24, 50, 35, 10, 1, 0, 120, 274, 225, 85, 15, 1, 0, 720, 1764, 1624, 735, 175, 21, 1, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1, 0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 0, 362880, 1026576, 1172700, 723680, 269325, 63273, 9450, 870, 45, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 10 2007, Oct 15 2008, Oct 17 2008

Keywords

Comments

Another name: Triangle of signless Stirling numbers of the first kind.
Triangle T(n,k), 0<=k<=n, read by rows given by [0,1,1,2,2,3,3,4,4,5,5,...] DELTA [1,0,1,0,1,0,1,0,1,...] where DELTA is the operator defined in A084938.
A094645*A007318 as infinite lower triangular matrices.
Row sums are the factorial numbers. - Roger L. Bagula, Apr 18 2008
Exponential Riordan array [1/(1-x), log(1/(1-x))]. - Ralf Stephan, Feb 07 2014
Also the Bell transform of the factorial numbers (A000142). For the definition of the Bell transform see A264428 and for cross-references A265606. - Peter Luschny, Dec 31 2015
This is the lower triagonal Sheffer matrix of the associated or Jabotinsky type |S1| = (1, -log(1-x)) (see the W. Lang link under A006232 for the notation and references). This implies the e.g.f.s given below. |S1| is the transition matrix from the monomial basis {x^n} to the rising factorial basis {risefac(x,n)}, n >= 0. - Wolfdieter Lang, Feb 21 2017
T(n, k), for n >= k >= 1, is also the total volume of the n-k dimensional cell (polytope) built from the n-k orthogonal vectors of pairwise different lengths chosen from the set {1, 2, ..., n-1}. See the elementary symmetric function formula for T(n, k) and an example below. - Wolfdieter Lang, May 28 2017
From Wolfdieter Lang, Jul 20 2017: (Start)
The compositional inverse w.r.t. x of y = y(t;x) = x*(1 - t(-log(1-x)/x)) = x + t*log(1-x) is x = x(t;y) = ED(y,t) := Sum_{d>=0} D(d,t)*y^(d+1)/(d+1)!, the e.g.f. of the o.g.f.s D(d,t) = Sum_{m>=0} T(d+m, m)*t^m of the diagonal sequences of the present triangle. See the P. Bala link for a proof (there d = n-1, n >= 1, is the label for the diagonals).
This inversion gives D(d,t) = P(d, t)/(1-t)^(2*d+1), with the numerator polynomials P(d, t) = Sum_{m=0..d} A288874(d, m)*t^m. See an example below. See also the P. Bala formula in A112007. (End)
For n > 0, T(n,k) is the number of permutations of the integers from 1 to n which have k visible digits when viewed from a specific end, in the sense that a higher value hides a lower one in a subsequent position. - Ian Duff, Jul 12 2019

Examples

			Triangle T(n,k) begins:
  1;
  0,    1;
  0,    1,     1;
  0,    2,     3,     1;
  0,    6,    11,     6,    1;
  0,   24,    50,    35,   10,    1;
  0,  120,   274,   225,   85,   15,   1;
  0,  720,  1764,  1624,  735,  175,  21,  1;
  0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1;
  ...
---------------------------------------------------
Production matrix is
  0, 1
  0, 1, 1
  0, 1, 2,  1
  0, 1, 3,  3,  1
  0, 1, 4,  6,  4,  1
  0, 1, 5, 10, 10,  5,  1
  0, 1, 6, 15, 20, 15,  6, 1
  0, 1, 7, 21, 35, 35, 21, 7, 1
  ...
From _Wolfdieter Lang_, May 09 2017: (Start)
Three term recurrence: 50 = T(5, 2) = 1*6 + (5-1)*11 = 50.
Recurrence from the Sheffer a-sequence [1, 1/2, 1/6, 0, ...]: 50 = T(5, 2) = (5/2)*(binomial(1, 1)*1*6 + binomial(2, 1)*(1/2)*11 + binomial(3, 1)*(1/6)*6 + 0) = 50. The vanishing z-sequence produces the k=0 column from T(0, 0) = 1. (End)
Elementary symmetric function T(4, 2) = sigma^{(3)}_2 = 1*2 + 1*3 + 2*3 = 11. Here the cells (polytopes) are 3 rectangles with total area 11. - _Wolfdieter Lang_, May 28 2017
O.g.f.s of diagonals: d=2 (third diagonal) [0, 6, 50, ...] has D(2,t) = P(2, t)/(1-t)^5, with P(2, t) = 2 + t, the n = 2 row of A288874. - _Wolfdieter Lang_, Jul 20 2017
Boas-Buck recurrence for column k = 2 and n = 5: T(5, 2) = (5!*2/3)*((3/8)*T(2,2)/2! + (5/12)*T(3,2)/3! + (1/2)*T(4,2)/4!) = (5!*2/3)*(3/16 + (5/12)*3/3! + (1/2)*11/4!) = 50. The beta sequence begins: {1/2, 5/12, 3/8, ...}. - _Wolfdieter Lang_, Aug 11 2017
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 31, 187, 441, 996.
  • R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., Table 259, p. 259.
  • Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 149-150

Crossrefs

Essentially a duplicate of A048994. Cf. A008275, A008277, A112007, A130534, A288874, A354795.

Programs

  • Haskell
    a132393 n k = a132393_tabl !! n !! k
    a132393_row n = a132393_tabl !! n
    a132393_tabl = map (map abs) a048994_tabl
    -- Reinhard Zumkeller, Nov 06 2013
    
  • Maple
    a132393_row := proc(n) local k; seq(coeff(expand(pochhammer (x,n)),x,k),k=0..n) end: # Peter Luschny, Nov 28 2010
  • Mathematica
    p[t_] = 1/(1 - t)^x; Table[ ExpandAll[(n!)SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[(n!)* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a] (* Roger L. Bagula, Apr 18 2008 *)
    Flatten[Table[Abs[StirlingS1[n,i]],{n,0,10},{i,0,n}]] (* Harvey P. Dale, Feb 04 2014 *)
  • Maxima
    create_list(abs(stirling1(n,k)),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • PARI
    column(n,k) = my(v1, v2); v1 = vector(n-1, i, 0); v2 = vector(n, i, 0); v2[1] = 1; for(i=1, n-1, v1[i] = (i+k)*(i+k-1)/2*v2[i]; for(j=1, i-1, v1[j] *= (i-j)*(i+k)/(i-j+2)); v2[i+1] = vecsum(v1)/i); v2 \\ generates n first elements of the k-th column starting from the first nonzero element. - Mikhail Kurkov, Mar 05 2025

Formula

T(n,k) = T(n-1,k-1)+(n-1)*T(n-1,k), n,k>=1; T(n,0)=T(0,k); T(0,0)=1.
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000142(n), A001147(n), A007559(n), A007696(n), A008548(n), A008542(n), A045754(n), A045755(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Nov 13 2007
Expand 1/(1-t)^x = Sum_{n>=0}p(x,n)*t^n/n!; then the coefficients of the p(x,n) produce the triangle. - Roger L. Bagula, Apr 18 2008
Sum_{k=0..n} T(n,k)*2^k*x^(n-k) = A000142(n+1), A000165(n), A008544(n), A001813(n), A047055(n), A047657(n), A084947(n), A084948(n), A084949(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Sep 18 2008
a(n) = Sum_{k=0..n} T(n,k)*3^k*x^(n-k) = A001710(n+2), A001147(n+1), A032031(n), A008545(n), A047056(n), A011781(n), A144739(n), A144756(n), A144758(n) for x=1,2,3,4,5,6,7,8,9,respectively. - Philippe Deléham, Sep 20 2008
Sum_{k=0..n} T(n,k)*4^k*x^(n-k) = A001715(n+3), A002866(n+1), A007559(n+1), A047053(n), A008546(n), A049308(n), A144827(n), A144828(n), A144829(n) for x=1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Sep 21 2008
Sum_{k=0..n} x^k*T(n,k) = x*(1+x)*(2+x)*...*(n-1+x), n>=1. - Philippe Deléham, Oct 17 2008
From Wolfdieter Lang, Feb 21 2017: (Start)
E.g.f. k-th column: (-log(1 - x))^k, k >= 0.
E.g.f. triangle (see the Apr 18 2008 Baluga comment): exp(-x*log(1-z)).
E.g.f. a-sequence: x/(1 - exp(-x)). See A164555/A027642. The e.g.f. for the z-sequence is 0. (End)
From Wolfdieter Lang, May 28 2017: (Start)
The row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k, for n >= 0, are R(n, x) = risefac(x,n-1) := Product_{j=0..n-1} x+j, with the empty product for n=0 put to 1. See the Feb 21 2017 comment above. This implies:
T(n, k) = sigma^{(n-1)}_(n-k), for n >= k >= 1, with the elementary symmetric functions sigma^{(n-1)}_m of degree m in the n-1 symbols 1, 2, ..., n-1, with binomial(n-1, m) terms. See an example below.(End)
Boas-Buck type recurrence for column sequence k: T(n, k) = (n!*k/(n - k)) * Sum_{p=k..n-1} beta(n-1-p)*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, and beta(k) = A002208(k+1)/A002209(k+1). See a comment and references in A286718. - Wolfdieter Lang, Aug 11 2017
T(n,k) = Sum_{j=k..n} j^(j-k)*binomial(j-1, k-1)*A354795(n,j) for n > 0. - Mélika Tebni, Mar 02 2023
n-th row polynomial: n!*Sum_{k = 0..2*n} (-1)^k*binomial(-x, k)*binomial(-x, 2*n-k) = n!*Sum_{k = 0..2*n} (-1)^k*binomial(1-x, k)*binomial(-x, 2*n-k). - Peter Bala, Mar 31 2024
From Mikhail Kurkov, Mar 05 2025: (Start)
For a general proof of the formulas below via generating functions, see Mathematics Stack Exchange link.
Recursion for the n-th row (independently of other rows): T(n,k) = 1/(n-k)*Sum_{j=2..n-k+1} binomial(-k,j)*T(n,k+j-1)*(-1)^j for 1 <= k < n with T(n,n) = 1.
Recursion for the k-th column (independently of other columns): T(n,k) = 1/(n-k)*Sum_{j=2..n-k+1} (j-2)!*binomial(n,j)*T(n-j+1,k) for 1 <= k < n with T(n,n) = 1 (see Fedor Petrov link). (End)

A045754 7-fold factorials: a(n) = Product_{k=0..n-1} (7*k+1).

Original entry on oeis.org

1, 1, 8, 120, 2640, 76560, 2756160, 118514880, 5925744000, 337767408000, 21617114112000, 1534815101952000, 119715577952256000, 10175824125941760000, 936175819586641920000, 92681406139077550080000, 9824229050742220308480000, 1110137882733870894858240000
Offset: 0

Views

Author

Keywords

Crossrefs

See also A113134.
Unsigned row sums of triangle A051186 (scaled Stirling1).
First column of triangle A132056 (S2(8)).

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 7*k+1) ); # G. C. Greubel, Aug 21 2019
  • Magma
    [1] cat [&*[7*j+1: j in [0..n-1]]: n in [1..20]]; // G. C. Greubel, Aug 21 2019
    
  • Maple
    f := n->product( (7*k+1), k=0..(n-1));
    G(x):=(1-7*x)^(-1/7): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..14); # Zerinvary Lajos, Apr 03 2009
  • Mathematica
    FoldList[Times, 1, 7Range[0, 20] + 1] (* Harvey P. Dale, Jan 21 2013 *)
  • PARI
    a(n)=prod(k=0,n-1,7*k+1)
    
  • Sage
    [7^n*rising_factorial(1/7, n) for n in (0..20)] # G. C. Greubel, Aug 21 2019
    

Formula

a(n) = Sum_{k=0..n} (-7)^(n-k)*A048994(n, k), where A048994 = Stirling-1 numbers.
E.g.f.: (1-7*x)^(-1/7).
G.f.: 1/(1-x/(1-7*x/(1-8*x/(1-14*x/(1-15*x/(1-21*x/(1-22*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-6)^n*Sum_{k=0..n} (7/6)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/G(0), where G(k)= 1 - x*(7*k+1)/(1 - x*(7*k+7)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(7*k+1)/(x*(7*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013
a(n) = 7^n * Gamma(n + 1/7) / Gamma(1/7). - Artur Jasinski, Aug 23 2016
a(n) = A114799(7n-6). - M. F. Hasler, Feb 23 2018
D-finite with recurrence: a(n) +(-7*n+6)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + (e/7^6)^(1/7)*(Gamma(1/7) - Gamma(1/7, 1/7)). - Amiram Eldar, Dec 19 2022

Extensions

Additional comments from Philippe Deléham and Paul D. Hanna, Oct 29 2005
Edited by N. J. A. Sloane, Oct 16 2008 at the suggestion of M. F. Hasler, Oct 14 2008
Corrected by Zerinvary Lajos, Apr 03 2009

A256890 Triangle T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.

Original entry on oeis.org

1, 2, 2, 4, 12, 4, 8, 52, 52, 8, 16, 196, 416, 196, 16, 32, 684, 2644, 2644, 684, 32, 64, 2276, 14680, 26440, 14680, 2276, 64, 128, 7340, 74652, 220280, 220280, 74652, 7340, 128, 256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172, 256, 512, 72076, 1637860, 10978444, 27227908, 27227908, 10978444, 1637860, 72076, 512
Offset: 0

Views

Author

Dale Gerdemann, Apr 12 2015

Keywords

Comments

Related triangles may be found by varying the function f(x). If f(x) is a linear function, it can be parameterized as f(x) = a*x + b. With different values for a and b, the following triangles are obtained:
a\b 1.......2.......3.......4.......5.......6
The row sums of these, and similarly constructed number triangles, are shown in the following table:
a\b 1.......2.......3.......4.......5.......6.......7.......8.......9
The formula can be further generalized to: t(n,m) = f(m+s)*t(n-1,m) + f(n-s)*t(n,m-1), where f(x) = a*x + b. The following table specifies triangles with nonzero values for s (given after the slash).
a\b 0 1 2 3
-2 A130595/1
-1
0
With the absolute value, f(x) = |x|, one obtains A038221/3, A038234/4, A038247/5, A038260/6, A038273/7, A038286/8, A038299/9 (with value for s after the slash).
If f(x) = A000045(x) (Fibonacci) and s = 1, the result is A010048 (Fibonomial).
In the notation of Carlitz and Scoville, this is the triangle of generalized Eulerian numbers A(r, s | alpha, beta) with alpha = beta = 2. Also the array A(2,1,4) in the notation of Hwang et al. (see page 31). - Peter Bala, Dec 27 2019

Examples

			Array, t(n, k), begins as:
   1,    2,      4,        8,        16,         32,          64, ...;
   2,   12,     52,      196,       684,       2276,        7340, ...;
   4,   52,    416,     2644,     14680,      74652,      357328, ...;
   8,  196,   2644,    26440,    220280,    1623964,    10978444, ...;
  16,  684,  14680,   220280,   2643360,   27227908,   251195000, ...;
  32, 2276,  74652,  1623964,  27227908,  381190712,  4677894984, ...;
  64, 7340, 357328, 10978444, 251195000, 4677894984, 74846319744, ...;
Triangle, T(n, k), begins as:
    1;
    2,     2;
    4,    12,      4;
    8,    52,     52,       8;
   16,   196,    416,     196,      16;
   32,   684,   2644,    2644,     684,      32;
   64,  2276,  14680,   26440,   14680,    2276,     64;
  128,  7340,  74652,  220280,  220280,   74652,   7340,   128;
  256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172,   256;
		

Crossrefs

Programs

  • Magma
    A256890:= func< n,k | (&+[(-1)^(k-j)*Binomial(j+3,j)*Binomial(n+4,k-j)*(j+2)^n: j in [0..k]]) >;
    [A256890(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 18 2022
    
  • Mathematica
    Table[Sum[(-1)^(k-j)*Binomial[j+3, j] Binomial[n+4, k-j] (j+2)^n, {j,0,k}], {n,0, 9}, {k,0,n}]//Flatten (* Michael De Vlieger, Dec 27 2019 *)
  • PARI
    t(n,m) = if ((n<0) || (m<0), 0, if ((n==0) && (m==0), 1, (m+2)*t(n-1, m) + (n+2)*t(n, m-1)));
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n-k, k), ", ");); print(););} \\ Michel Marcus, Apr 14 2015
    
  • SageMath
    def A256890(n,k): return sum((-1)^(k-j)*Binomial(j+3,j)*Binomial(n+4,k-j)*(j+2)^n for j in range(k+1))
    flatten([[A256890(n,k) for k in range(n+1)] for n in range(11)]) # G. C. Greubel, Oct 18 2022

Formula

T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0 else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.
Sum_{k=0..n} T(n, k) = A001715(n).
T(n,k) = Sum_{j = 0..k} (-1)^(k-j)*binomial(j+3,j)*binomial(n+4,k-j)*(j+2)^n. - Peter Bala, Dec 27 2019
Modified rule of Pascal: T(0,0) = 1, T(n,k) = 0 if k < 0 or k > n else T(n,k) = f(n-k) * T(n-1,k-1) + f(k) * T(n-1,k), where f(x) = x + 2. - Georg Fischer, Nov 11 2021
From G. C. Greubel, Oct 18 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n). (End)

A084947 a(n) = Product_{i=0..n-1} (7*i+2).

Original entry on oeis.org

1, 2, 18, 288, 6624, 198720, 7352640, 323516160, 16499324160, 956960801280, 62202452083200, 4478576549990400, 353807547449241600, 30427449080634777600, 2829752764499034316800, 282975276449903431680000, 30278354580139667189760000, 3451732422135922059632640000
Offset: 0

Views

Author

Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003

Keywords

Crossrefs

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 7*k+2) ); # G. C. Greubel, Aug 18 2019
  • Magma
    [ 1 ] cat [ &*[ (7*k+2): k in [0..n-1] ]: n in [1..15] ]; // Klaus Brockhaus, Nov 10 2008
    
  • Maple
    a := n->product(7*i+2,i=0..n-1); [seq(a(j),j=0..30)];
  • Mathematica
    Join[{1},FoldList[Times,7*Range[0,15]+2]] (* Harvey P. Dale, Nov 27 2015 *)
    Table[7^n*Pochhammer[2/7, n], {n,0,15}] (* G. C. Greubel, Aug 18 2019 *)
  • PARI
    vector(20, n, n--; prod(k=0, n-1, 7*k+2)) \\ G. C. Greubel, Aug 18 2019
    
  • Sage
    [product(7*k+2 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 18 2019
    

Formula

a(n) = A084942(n)/A000142(n)*A000079(n) = 7^n*Pochhammer(2/7, n) = 7^n*Gamma(n+2/7)/Gamma(2/7).
D-finite with recurrence a(0) = 1; a(n) = (7*n - 5)*a(n-1) for n > 0. - Klaus Brockhaus, Nov 10 2008
G.f.: 1/(1-2*x/(1-7*x/(1-9*x/(1-14*x/(1-16*x/(1-21*x/(1-23*x/(1-28*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-5)^n*Sum_{k=0..n} (7/5)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
From Ilya Gutkovskiy, Mar 23 2017: (Start)
E.g.f.: 1/(1 - 7*x)^(2/7).
a(n) ~ sqrt(2*Pi)*7^n*n^n/(exp(n)*n^(3/14)*Gamma(2/7)). (End)
Sum_{n>=0} 1/a(n) = 1 + (e/7^5)^(1/7)*(Gamma(2/7) - Gamma(2/7, 1/7)). - Amiram Eldar, Dec 19 2022

Extensions

a(15) from Klaus Brockhaus, Nov 10 2008

A049209 a(n) = -Product_{k=0..n} (7*k-1); sept-factorial numbers.

Original entry on oeis.org

1, 6, 78, 1560, 42120, 1432080, 58715280, 2818333440, 155008339200, 9610517030400, 663125675097600, 50397551307417600, 4182996758515660800, 376469708266409472000, 36517561701841718784000, 3797826416991538753536000, 421558732286060801642496000
Offset: 0

Views

Author

Keywords

Crossrefs

Row sums of triangle A051186 (scaled Stirling1 triangle).
Sequences of the form m^n*Pochhammer((m-1)/m, n): A000007 (m=1), A001147 (m=2), A008544 (m=3), A008545 (m=4), A008546 (m=5), A008543 (m=6), this sequence (m=7), A049210 (m=8), A049211 (m=9), A049212 (m=10), A254322 (m=11), A346896 (m=12).

Programs

  • Magma
    [ -&*[ (7*k-1): k in [0..n-1] ]: n in [1..15] ]; // Klaus Brockhaus, Nov 10 2008
    
  • Mathematica
    CoefficientList[Series[(1-7*x)^(-6/7),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
    With[{m=7}, Table[m^n*Pochhammer[(m-1)/m, n], {n, 0, 30}]] (* G. C. Greubel, Feb 16 2022 *)
  • Sage
    m=7; [m^n*rising_factorial((m-1)/m, n) for n in (0..30)] # G. C. Greubel, Feb 16 2022

Formula

a(n) = 6*A034833(n) = (7*n-1)*(!^7), n >= 1, a(0) := 1.
a(n) = Product_{k=1..n} (7*k - 1). a(0) = 1; a(n) = (7*n - 1)*a(n-1) for n > 0. - Klaus Brockhaus, Nov 10 2008
G.f.: 1/(1-6*x/(1-7*x/(1-13*x/(1-14*x/(1-20*x/(1-21*x/(1-27*x/(1-28*x/(1-...(continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-1)^n*Sum_{k=0..n} 7^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
a(n) = 7^n * Gamma(n+6/7) / Gamma(6/7). - Vaclav Kotesovec, Jan 28 2015
E.g.f.: (1-7*x)^(-6/7). - Vaclav Kotesovec, Jan 28 2015
From Nikolaos Pantelidis, Dec 19 2020: (Start)
G.f.: 1/G(0) where G(k) = 1 - (14*k+6)*x - 7*(k+1)*(7*k+6)*x^2/G(k+1); (continued fraction).
which starts as 1/(1-6*x-42*x^2/(1-20*x-182*x^2/(1-34*x-420*x^2/(1-48*x-756*x^2/(1-62*x-1190*x^2/(1-... )))))) (Jacobi continued fraction).
G.f.: 1/Q(0) where Q(k) = 1 - (7*k+6)*x/(1 - (7*k+7)*x/Q(k+1) ); (continued fraction). (End)
Sum_{n>=0} 1/a(n) = 1 + (e/7)^(1/7)*(Gamma(6/7) - Gamma(6/7, 1/7)). - Amiram Eldar, Dec 19 2022

A051188 Sept-factorial numbers.

Original entry on oeis.org

1, 7, 98, 2058, 57624, 2016840, 84707280, 4150656720, 232436776320, 14643516908160, 1025046183571200, 78928556134982400, 6629998715338521600, 603329883095805465600, 59126328543388935628800
Offset: 0

Views

Author

Keywords

Comments

For n >= 1, a(n) is the order of the wreath product of the symmetric group S_n and the Abelian group (C_7)^n. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 07 2001

Crossrefs

Programs

Formula

a(n) = n!*7^n =: (7*n)(!^7).
a(n) = 7*A034834(n) = Product_{k=1..n} 7*k, n >= 1.
E.g.f.: 1/(1 - 7*x).
G.f.: 1/(1 - 7*x/(1 - 7*x/(1 - 14*x/(1 - 14*x/(1 - 21*x/(1 - 21*x/(1 - 28*x/(1 - 28*x/(1 - ... (continued fraction). - Philippe Deléham, Jan 08 2012
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = e^(1/7) (A092516).
Sum_{n>=0} (-1)^n/a(n) = e^(-1/7) (A092750). (End)

A144828 Partial products of successive terms of A017113; a(0)=1.

Original entry on oeis.org

1, 4, 48, 960, 26880, 967680, 42577920, 2214051840, 132843110400, 9033331507200, 686533194547200, 57668788341964800, 5305528527460761600, 530552852746076160000, 57299708096576225280000, 6646766139202842132480000, 824199001261152424427520000, 108794268166472120024432640000
Offset: 0

Views

Author

Philippe Deléham, Sep 21 2008

Keywords

Comments

a(n) is the number of signed permutations of length 4n that are equal to their reverse-inverses. Note that the reverse-inverse of a permutation is equivalent to a 90-degree rotation of the permutation's diagram (see the Hardt and Troyka link). - Justin M. Troyka, Aug 11 2011
Define the bar operation as an operation on signed permutation that flips the sign of each entry. Then a(n) is the number of signed permutations of length 2n that are equal to the bar of their inverses and equal to their reverse-complements (see the Hardt and Troyka link). - Justin M. Troyka, Aug 11 2011

Examples

			a(0)=1, a(1)=4, a(2)=4*12=48, a(3)=4*12*20=960, a(4)=4*12*20*28=26880, ...
Since a(1) = 4, there are 4 signed permutations of 4 that are equal to their reverse-inverses.  These are: (+2,+4,+1,+3), (+3,+1,+4,+2), (-2,-4,-1,-3), (-3,-1,-4,-2). - _Justin M. Troyka_, Aug 11 2011
G.f. = 1 + 4*x + 48*x^2 + 960*x^3 + 26880*x^4 + 967680*x^5 + 42577920*x^6 + ...
		

Crossrefs

Essentially the same as A052714. - N. J. A. Sloane, Feb 03 2013
Sequences of the form m^(n-1)*n!*Catalan(n-1): A001813 (m=1), A052714 (or this sequence) (m=2), A221954 (m=3), A052734 (m=4), A221953 (m=5), A221955 (m=6).

Programs

  • Magma
    [2^k *Factorial(2*k) / Factorial(k): k in [0..20]]; // Vincenzo Librandi, Aug 11 2011
    
  • Maple
    A144828:= n-> 2^n*n!*binomial(2*n,n); seq(A144828(n), n=0..30); # G. C. Greubel, Apr 02 2021
  • Mathematica
    Table[4^n (2 n - 1)!!, {n, 0, 15}] (* Vincenzo Librandi, May 14 2015 *)
    Join[{1},FoldList[Times,(8*Range[0,20]+4)]] (* Harvey P. Dale, Dec 01 2015 *)
  • PARI
    a(n)=binomial(2*n,n)*n!<Charles R Greathouse IV, Jan 17 2012
    
  • PARI
    {a(n) = if( n<0, (-1)^n / a(-n), 2^n *(2*n)! / n!)}; /* Michael Somos, Jan 06 2017 */
    
  • Sage
    [2^n*factorial(n+1)*catalan_number(n) for n in (0..30)] # G. C. Greubel, Apr 02 2021

Formula

a(n) = Sum_{k=0..n} A132393(n,k)*4^k*8^(n-k).
a(n) = A052714(n+1). - R. J. Mathar, Oct 01 2008
a(n) = 2^n *(2*n)! / n!. - Justin M. Troyka, Aug 11 2011
G.f.: 1/(1-4x/(1-8x/(1-12x/(1-16x/(1-20x/(1-24x/(1-28x/(1-32x/(1-... (continued fraction). - Philippe Deléham, Jan 07 2012
a(n) = (-4)^n*Sum_{k=0..n} 2^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
E.g.f.: 1/sqrt(1-8*x). - Philippe Deléham, May 14 2015
a(n) = 4^n * A001147(n). - Philippe Deléham, May 14 2015
a(n) = 8^n * Gamma(n + 1/2) / sqrt(Pi). - Daniel Suteu, Jan 06 2017
0 = a(n)*(8*a(n+1) - a(n+2)) + a(n+1)*(+a(n+1)) and a(n) = (-1)^n / a(-n) for all n in Z. - Michael Somos, Jan 06 2017
a(n) = 2^n * (n+1)! * Catalan(n). - G. C. Greubel, Apr 02 2021
Sum_{n>=0} 1/a(n) = 1 + e^(1/8)*sqrt(Pi)*erf(1/(2*sqrt(2)))/(2*sqrt(2)), where erf is the error function. - Amiram Eldar, Dec 20 2022

A144739 7-factorial numbers A114799(7*n+3): Partial products of A017017(k) = 7*k+3, a(0) = 1.

Original entry on oeis.org

1, 3, 30, 510, 12240, 379440, 14418720, 648842400, 33739804800, 1990648483200, 131382799891200, 9590944392057600, 767275551364608000, 66752972968720896000, 6274779459059764224000, 633752725365036186624000, 68445294339423908155392000, 7871208849033749437870080000
Offset: 0

Views

Author

Philippe Deléham, Sep 20 2008

Keywords

Examples

			a(0)=1, a(1)=3, a(2)=3*10=30, a(3)=3*10*17=510, a(4)=3*10*17*24=12240, ...
		

Crossrefs

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 7*k+3) ); # G. C. Greubel, Aug 19 2019
  • Magma
    [ 1 ] cat [ &*[ (7*k+3): k in [0..n] ]: n in [0..20] ]; // Klaus Brockhaus, Nov 10 2008
    
  • Maple
    a:= n-> product(7*j+3, j=0..n-1); seq(a(n), n=0..20); # G. C. Greubel, Aug 19 2019
  • Mathematica
    Table[7^n*Pochhammer[3/7, n], {n,0,20}] (* G. C. Greubel, Aug 19 2019 *)
  • PARI
    a(n)=prod(i=1,n,7*i-4) \\ Charles R Greathouse IV, Jul 02 2013
    
  • Sage
    [product(7*k+3 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 19 2019
    

Formula

a(n) = Sum_{k=0..n} A132393(n,k)*3^k*7^(n-k).
G.f.: 1/(1-3*x/(1-7*x/(1-10*x/(1-14*x/(1-17*x/(1-21*x/(1-24*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-4)^n*Sum_{k=0..n} (7/4)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
From Ilya Gutkovskiy, Mar 23 2017: (Start)
E.g.f.: 1/(1 - 7*x)^(3/7).
a(n) ~ sqrt(2*Pi)*7^n*n^n/(exp(n)*n^(1/14)*Gamma(3/7)). (End)
a(n) = A114799(7*n-4). - M. F. Hasler, Feb 23 2018
D-finite with recurrence: a(n) +(-7*n+4)*a(n-1)=0. - R. J. Mathar, Feb 21 2020
Sum_{n>=0} 1/a(n) = 1 + (e/7^4)^(1/7)*(Gamma(3/7) - Gamma(3/7, 1/7)). - Amiram Eldar, Dec 19 2022

A257617 Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 7*x + 2.

Original entry on oeis.org

1, 2, 2, 4, 36, 4, 8, 388, 388, 8, 16, 3676, 12416, 3676, 16, 32, 33564, 283204, 283204, 33564, 32, 64, 303260, 5538184, 13027384, 5538184, 303260, 64, 128, 2732156, 99831564, 465775352, 465775352, 99831564, 2732156, 128
Offset: 0

Views

Author

Dale Gerdemann, May 09 2015

Keywords

Examples

			    1;
    2,       2;
    4,      36,        4;
    8,     388,      388,         8;
   16,    3676,    12416,      3676,        16;
   32,   33564,   283204,    283204,     33564,       32;
   64,  303260,  5538184,  13027384,   5538184,   303260,      64;
  128, 2732156, 99831564, 465775352, 465775352, 99831564, 2732156, 128;
		

Crossrefs

Cf. A000079, A142462, A144827 (row sums), A257627.
Similar sequences listed in A256890.

Programs

  • Mathematica
    T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
    Table[T[n,k,7,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 24 2022 *)
  • Sage
    def T(n,k,a,b): # A257617
        if (k<0 or k>n): return 0
        elif (n==0): return 1
        else: return  (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
    flatten([[T(n,k,7,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 24 2022

Formula

T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 7*x + 2.
Sum_{k=0..n} T(n, k) = A144827(n).
From G. C. Greubel, Mar 24 2022: (Start)
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 7, and b = 2.
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n).
T(n, 1) = (4*9^n - 2^n*(7*n + 4))/7.
T(n, 2) = (2^(n-1)*(49*n^2 +7*n -12) + 11*2^(4*n+1) - 4*(7*n+4)*9^n)/49. (End)

A147585 a(1) = 1; a(n) = (7*n-9)*a(n-1) for n > 1.

Original entry on oeis.org

1, 5, 60, 1140, 29640, 978120, 39124800, 1838865600, 99298742400, 6057223286400, 411891183475200, 30891838760640000, 2533130778372480000, 225448639275150720000, 21643069370414469120000, 2229236145152690319360000, 245215975966795935129600000, 28690269188115124410163200000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [ n eq 1 select 1 else Self(n-1)*(7*n-9): n in [1..15] ]; // Klaus Brockhaus, Nov 10 2008
    
  • Magma
    [ 1 ] cat [ &*[ (5+7*k): k in [0..n-1] ]: n in [1..14] ]; // Klaus Brockhaus, Nov 10 2008
    
  • Maple
    seq( -7^n*pochhammer(-2/7, n)/2, n = 1..15); # G. C. Greubel, Dec 03 2019
  • Mathematica
    Table[-7^n*Pochhammer[-2/7, n]/2, {n, 15}] (* G. C. Greubel, Dec 03 2019 *)
  • PARI
    {for(n=1, 15, print1(prod(k=1, n-1, 7*k-2,), ","))} \\ Klaus Brockhaus, Nov 10 2008
    
  • Sage
    [-7^n*rising_factorial(-2/7, n)/2 for n in (1..15)] # G. C. Greubel, Dec 03 2019

Formula

a(n) = Product_{k=1..n-1} (7*k - 2). - Klaus Brockhaus, Nov 10 2008
a(n) = (5*7^(n-1)*Gamma(5/7+n))/Gamma(12/7). - Klaus Brockhaus, Nov 10 2008
a(n+1) = Sum_{k=0..n} A132393(n,k)*5^k*7^(n-k). - Philippe Deléham, Nov 09 2008
G.f.: x/(1-5x/(1-7x/(1-12x/(1-14x/(1-19x/(1-21x/(1-26x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-2)^n*Sum_{k=0..n} (7/2)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
Sum_{n>=1} 1/a(n) = 1 + (e/7^2)^(1/7)*(Gamma(5/7) - Gamma(5/7, 1/7)). - Amiram Eldar, Dec 19 2022

Extensions

Edited by Klaus Brockhaus, Nov 10 2008
Showing 1-10 of 12 results. Next