cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A256890 Triangle T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.

Original entry on oeis.org

1, 2, 2, 4, 12, 4, 8, 52, 52, 8, 16, 196, 416, 196, 16, 32, 684, 2644, 2644, 684, 32, 64, 2276, 14680, 26440, 14680, 2276, 64, 128, 7340, 74652, 220280, 220280, 74652, 7340, 128, 256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172, 256, 512, 72076, 1637860, 10978444, 27227908, 27227908, 10978444, 1637860, 72076, 512
Offset: 0

Views

Author

Dale Gerdemann, Apr 12 2015

Keywords

Comments

Related triangles may be found by varying the function f(x). If f(x) is a linear function, it can be parameterized as f(x) = a*x + b. With different values for a and b, the following triangles are obtained:
a\b 1.......2.......3.......4.......5.......6
The row sums of these, and similarly constructed number triangles, are shown in the following table:
a\b 1.......2.......3.......4.......5.......6.......7.......8.......9
The formula can be further generalized to: t(n,m) = f(m+s)*t(n-1,m) + f(n-s)*t(n,m-1), where f(x) = a*x + b. The following table specifies triangles with nonzero values for s (given after the slash).
a\b 0 1 2 3
-2 A130595/1
-1
0
With the absolute value, f(x) = |x|, one obtains A038221/3, A038234/4, A038247/5, A038260/6, A038273/7, A038286/8, A038299/9 (with value for s after the slash).
If f(x) = A000045(x) (Fibonacci) and s = 1, the result is A010048 (Fibonomial).
In the notation of Carlitz and Scoville, this is the triangle of generalized Eulerian numbers A(r, s | alpha, beta) with alpha = beta = 2. Also the array A(2,1,4) in the notation of Hwang et al. (see page 31). - Peter Bala, Dec 27 2019

Examples

			Array, t(n, k), begins as:
   1,    2,      4,        8,        16,         32,          64, ...;
   2,   12,     52,      196,       684,       2276,        7340, ...;
   4,   52,    416,     2644,     14680,      74652,      357328, ...;
   8,  196,   2644,    26440,    220280,    1623964,    10978444, ...;
  16,  684,  14680,   220280,   2643360,   27227908,   251195000, ...;
  32, 2276,  74652,  1623964,  27227908,  381190712,  4677894984, ...;
  64, 7340, 357328, 10978444, 251195000, 4677894984, 74846319744, ...;
Triangle, T(n, k), begins as:
    1;
    2,     2;
    4,    12,      4;
    8,    52,     52,       8;
   16,   196,    416,     196,      16;
   32,   684,   2644,    2644,     684,      32;
   64,  2276,  14680,   26440,   14680,    2276,     64;
  128,  7340,  74652,  220280,  220280,   74652,   7340,   128;
  256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172,   256;
		

Crossrefs

Programs

  • Magma
    A256890:= func< n,k | (&+[(-1)^(k-j)*Binomial(j+3,j)*Binomial(n+4,k-j)*(j+2)^n: j in [0..k]]) >;
    [A256890(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 18 2022
    
  • Mathematica
    Table[Sum[(-1)^(k-j)*Binomial[j+3, j] Binomial[n+4, k-j] (j+2)^n, {j,0,k}], {n,0, 9}, {k,0,n}]//Flatten (* Michael De Vlieger, Dec 27 2019 *)
  • PARI
    t(n,m) = if ((n<0) || (m<0), 0, if ((n==0) && (m==0), 1, (m+2)*t(n-1, m) + (n+2)*t(n, m-1)));
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n-k, k), ", ");); print(););} \\ Michel Marcus, Apr 14 2015
    
  • SageMath
    def A256890(n,k): return sum((-1)^(k-j)*Binomial(j+3,j)*Binomial(n+4,k-j)*(j+2)^n for j in range(k+1))
    flatten([[A256890(n,k) for k in range(n+1)] for n in range(11)]) # G. C. Greubel, Oct 18 2022

Formula

T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0 else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.
Sum_{k=0..n} T(n, k) = A001715(n).
T(n,k) = Sum_{j = 0..k} (-1)^(k-j)*binomial(j+3,j)*binomial(n+4,k-j)*(j+2)^n. - Peter Bala, Dec 27 2019
Modified rule of Pascal: T(0,0) = 1, T(n,k) = 0 if k < 0 or k > n else T(n,k) = f(n-k) * T(n-1,k-1) + f(k) * T(n-1,k), where f(x) = x + 2. - Georg Fischer, Nov 11 2021
From G. C. Greubel, Oct 18 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n). (End)

A051188 Sept-factorial numbers.

Original entry on oeis.org

1, 7, 98, 2058, 57624, 2016840, 84707280, 4150656720, 232436776320, 14643516908160, 1025046183571200, 78928556134982400, 6629998715338521600, 603329883095805465600, 59126328543388935628800
Offset: 0

Views

Author

Keywords

Comments

For n >= 1, a(n) is the order of the wreath product of the symmetric group S_n and the Abelian group (C_7)^n. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 07 2001

Crossrefs

Programs

Formula

a(n) = n!*7^n =: (7*n)(!^7).
a(n) = 7*A034834(n) = Product_{k=1..n} 7*k, n >= 1.
E.g.f.: 1/(1 - 7*x).
G.f.: 1/(1 - 7*x/(1 - 7*x/(1 - 14*x/(1 - 14*x/(1 - 21*x/(1 - 21*x/(1 - 28*x/(1 - 28*x/(1 - ... (continued fraction). - Philippe Deléham, Jan 08 2012
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = e^(1/7) (A092516).
Sum_{n>=0} (-1)^n/a(n) = e^(-1/7) (A092750). (End)

A034835 Expansion of 1/(1-49*x)^(1/7); related to sept-factorial numbers A045754.

Original entry on oeis.org

1, 7, 196, 6860, 264110, 10722866, 450360372, 19365495996, 847240449825, 37560993275575, 1682732498745760, 76028913806967520, 3459315578217022160, 158330213003009860400, 7283189798138453578400, 336483368673996555322080, 15604416222256590253061460, 726064307753233111186565580
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!(1/(1 - 49*x)^(1/7))); // G. C. Greubel, Feb 22 2018
  • Mathematica
    CoefficientList[Series[1/(1 - 49*x)^(1/7), {x,0,50}], x] (* G. C. Greubel, Feb 22 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec(1/(1 - 49*x)^(1/7)) \\ G. C. Greubel, Feb 22 2018
    

Formula

a(n) = 7^n*A045754(n)/n!, n >= 1, where A045754(n) = (7*n-6)(!^7) = Product_{j=1..n} (7*j-6).
G.f.: (1-49*x)^(-1/7).
D-finite with recurrence: n*a(n) + 7*(-7*n+6)*a(n-1) = 0. - R. J. Mathar, Jan 28 2020
a(n) ~ 7^(2*n) * n^(-6/7) / Gamma(1/7). - Amiram Eldar, Aug 18 2025

A034829 a(n) = n-th sept-factorial number divided by 2.

Original entry on oeis.org

1, 9, 144, 3312, 99360, 3676320, 161758080, 8249662080, 478480400640, 31101226041600, 2239288274995200, 176903773724620800, 15213724540317388800, 1414876382249517158400, 141487638224951715840000, 15139177290069833594880000, 1725866211067961029816320000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Drop[With[{nn = 50}, CoefficientList[Series[(-1 + (1 - 7*x)^(-2/7))/2, {x, 0, nn}], x]*Range[0, nn]!], 1] (* G. C. Greubel, Feb 23 2018 *)
  • PARI
    vector(20, n, prod(j=1, n, 7*j-5)/2) \\ Michel Marcus, Jan 07 2015

Formula

2*a(n) = (7*n-5)(!^7) = Product_{j=1..n} (7*j-5).
E.g.f.: (-1 + (1-7*x)^(-2/7))/2.
D-finite with recurrence: a(n) +(-7*n+5)*a(n-1)=0. - R. J. Mathar, Feb 24 2020
From Amiram Eldar, Dec 19 2022: (Start)
a(n) = A084947(n)/2.
Sum_{n>=1} 1/a(n) = 2*(e/7^5)^(1/7)*(Gamma(2/7) - Gamma(2/7, 1/7)). (End)

A034830 a(n) = n-th sept-factorial number divided by 3.

Original entry on oeis.org

1, 10, 170, 4080, 126480, 4806240, 216280800, 11246601600, 663549494400, 43794266630400, 3196981464019200, 255758517121536000, 22250990989573632000, 2091593153019921408000, 211250908455012062208000, 22815098113141302718464000, 2623736283011249812623360000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Drop[With[{nn = 40}, CoefficientList[Series[(-1 + (1 - 7*x)^(-3/7))/3, {x, 0, nn}], x]*Range[0, nn]!], 1] (* G. C. Greubel, Feb 23 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((-1 + (1-7*x)^(-3/7))/3)) \\ G. C. Greubel, Feb 23 2018

Formula

3*a(n) = (7*n-4)(!^7) = Product_{j=1..n} (7*j-4).
E.g.f.: (-1 + (1-7*x)^(-3/7))/3.
From Amiram Eldar, Dec 20 2022: (Start)
a(n) = A144739(n)/3.
Sum_{n>=1} 1/a(n) = 3*(e/7^4)^(1/7)*(Gamma(3/7) - Gamma(3/7, 1/7)). (End)

Extensions

More terms added by G. C. Greubel, Feb 23 2018

A034833 a(n) = n-th sept-factorial number divided by 6.

Original entry on oeis.org

1, 13, 260, 7020, 238680, 9785880, 469722240, 25834723200, 1601752838400, 110520945849600, 8399591884569600, 697166126419276800, 62744951377734912000, 6086260283640286464000, 632971069498589792256000, 70259788714343466940416000, 8290655068292529098969088000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(&*[(7*k-1): k in [1..n]])/6: n in [1..30]]; // G. C. Greubel, Feb 24 2018
  • Mathematica
    FoldList[Times,1,Rest[7*Range[20]-1]] (* Harvey P. Dale, Dec 15 2014 *)
  • PARI
    my(x='x+('x^30)); Vec(serlaplace((-1 + (1-7*x)^(-6/7))/6)) \\ G. C. Greubel, Feb 22 2018
    

Formula

a(n) = A049209(n)/6;
a(n) = (7*n-1)(!^7)/6;
a(n) = (1/6)*Product_{j=1..n} (7*j-1);
a(n) = (1/6)*(7*n)! / (7^n * n! * A045754(n) * 2*A034829(n) * 3*A034830(n) * 4*A034831(n) * 5*A034832(n)).
E.g.f.: (-1 + (1-7*x)^(-6/7))/6.
Sum_{n>=1} 1/a(n) = 6*(e/7)^(1/7)*(Gamma(6/7) - Gamma(6/7, 1/7)). - Amiram Eldar, Dec 20 2022

A034832 a(n) = n-th sept-factorial number divided by 5.

Original entry on oeis.org

1, 12, 228, 5928, 195624, 7824960, 367773120, 19859748480, 1211444657280, 82378236695040, 6178367752128000, 506626155674496000, 45089727855030144000, 4328613874082893824000, 445847229030538063872000, 49043195193359187025920000, 5738053837623024882032640000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[FoldList[Times,1,7*Range[20]-2]/5] (* Harvey P. Dale, May 30 2013 *)
    Drop[With[{nn = 50}, CoefficientList[Series[(-1 + (1 - 7*x)^(-5/7))/5, {x, 0, nn}], x]*Range[0, nn]!], 1] (* G. C. Greubel, Feb 22 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((-1 + (1-7*x)^(-5/7))/5)) \\ G. C. Greubel, Feb 22 2018

Formula

5*a(n) = (7*n-2)(!^7) = Product_{j=1..n} (7*j-2).
E.g.f.: (-1 + (1-7*x)^(-5/7))/5.
From Amiram Eldar, Dec 20 2022: (Start)
a(n) = A147585(n+1)/5.
Sum_{n>=1} 1/a(n) = 5*(e/7^2)^(1/7)*(Gamma(5/7) - Gamma(5/7, 1/7)). (End)

Extensions

More terms from G. C. Greubel, Feb 22 2018

A034831 a(n) = n-th sept-factorial number divided by 4.

Original entry on oeis.org

1, 11, 198, 4950, 158400, 6177600, 284169600, 15060988800, 903659328000, 60545174976000, 4480342948224000, 362907778806144000, 31935884534940672000, 3033909030819363840000, 309458721143575111680000, 33731000604649687173120000, 3912796070139363712081920000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(&*[(7*k-3): k in [1..n]])/4: n in [1..30]]; // G. C. Greubel, Feb 24 2018
  • Mathematica
    Drop[With[{nn = 40}, CoefficientList[Series[(-1 + (1 - 7*x)^(-4/7))/4, {x, 0, nn}], x]*Range[0, nn]!], 1] (* G. C. Greubel, Feb 22 2018 *)
    Table[Product[7 j - 3, {j, n}], {n, 30}]/4 (* Vincenzo Librandi, Feb 24 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((-1 + (1-7*x)^(-4/7))/4)) \\ G. C. Greubel, Feb 22 2018
    

Formula

4*a(n) = (7*n-3)(!^7) = Product_{j=1..n} (7*j-3).
E.g.f.: (-1 + (1-7*x)^(-4/7))/4.
From Amiram Eldar, Dec 20 2022: (Start)
a(n) = A144827(n)/4.
Sum_{n>=1} 1/a(n) = 4*(e/7^3)^(1/7)*(Gamma(4/7) - Gamma(4/7, 1/7)). (End)

Extensions

More terms added by G. C. Greubel, Feb 23 2018

A053106 a(n) = ((7*n+10)(!^7))/10(1^7), related to A034830 (((7*n+3)(!^7))/3 sept-, or 7-factorials).

Original entry on oeis.org

1, 17, 408, 12648, 480624, 21628080, 1124660160, 66354949440, 4379426663040, 319698146401920, 25575851712153600, 2225099098957363200, 209159315301992140800, 21125090845501206220800
Offset: 0

Views

Author

Keywords

Comments

Row m=10 of the array A(8; m,n) := ((7*n+m)(!^7))/m(!^7), m >= 0, n >= 0.

Crossrefs

Cf. A051188, A045754(n+1), A034829-A034834(n+1), A053104-A053106 (rows m=0..10).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-7*x)^(17/7))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 16 2018
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 16, 5!, 7}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    With[{nn = 30}, CoefficientList[Series[1/(1 - 7*x)^(17/7), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 16 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-7*x)^(17/7))) \\ G. C. Greubel, Aug 16 2018
    

Formula

a(n) = ((7*n+10)(!^7))/10(!^7) = A034830(n+2)/10.
E.g.f.: 1/(1-7*x)^(17/7).

A208459 Triangle T_x = T(n,k) given by (0, 1/x, 1-1/x, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (x, 1/x-1, -1/x, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938, for x = 0.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 0, 1, 0, -1, 0, 1, 0, 1, 2, 0, 1, 0, 2, 0, -3, 0, 1, 0, 3, -1, 0, 5, 0, 1, 0, 4, -2, 3, 2, -8, 0, 1, 0, 5, -3, 7, -2, -5, 13, 0, 1, 0, 6, -4, 12, -8, 2, 12, -21, 0, 1, 0, 7, -5, 18, -16, 15, 3, -25, 34
Offset: 0

Views

Author

Philippe Deléham, Feb 27 2012

Keywords

Comments

Triangle T_x : T_1 = A103631, T_2 = A208343, T_3 = A208345.

Examples

			Triangle begins :
1
0, 0
0, 1, 1
0, 1, 0, -1
0, 1, 0, 1, 2
0, 1, 0, 2, 0, -3
0, 1, 0, 3, -1, 0, 5
0, 1, 0, 4, -2, 3, 2, -8
0, 1, 0, 5, -3, 7, -2, -5, 13
0, 1, 0, 6, -4, 12, -8, 2, 12, -21
0, 1, 0, 7, -5, 18, -16, 15, 3, -25, 34
		

Crossrefs

Cf. A103631, A208343, A208345, A000045 (Fibonacci)

Formula

T(n,k) = T(n-1,k) - T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2) with T(0,0) = 1 T(1,0) = 0, T(1,1) = 0, T(n,k) = 0 if k<0 or if k>n.
G.f.: (1-x+y*x)/(1-x+y*x- y^2*x^2-y*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = 12*A015548(n-1), 6*A085939(n-1), A106434(n), A000007(n), A000007(n), A077957(n), (-1)^n*A102901(n) for x = -4, -3, -2, -1, 0, 1, 2 respectively.
Sm_{k, 0<=k<=n} T(n,k)*x^(n-k) = A000007(n), A034834(n-1), A077957(n), A052533(n), (-1)^n*A086344(n) for x = -1, 0, 1, 2, 3 respectively.
Showing 1-10 of 10 results.