cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A132393 Triangle of unsigned Stirling numbers of the first kind (see A048994), read by rows, T(n,k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 6, 11, 6, 1, 0, 24, 50, 35, 10, 1, 0, 120, 274, 225, 85, 15, 1, 0, 720, 1764, 1624, 735, 175, 21, 1, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1, 0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 0, 362880, 1026576, 1172700, 723680, 269325, 63273, 9450, 870, 45, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 10 2007, Oct 15 2008, Oct 17 2008

Keywords

Comments

Another name: Triangle of signless Stirling numbers of the first kind.
Triangle T(n,k), 0<=k<=n, read by rows given by [0,1,1,2,2,3,3,4,4,5,5,...] DELTA [1,0,1,0,1,0,1,0,1,...] where DELTA is the operator defined in A084938.
A094645*A007318 as infinite lower triangular matrices.
Row sums are the factorial numbers. - Roger L. Bagula, Apr 18 2008
Exponential Riordan array [1/(1-x), log(1/(1-x))]. - Ralf Stephan, Feb 07 2014
Also the Bell transform of the factorial numbers (A000142). For the definition of the Bell transform see A264428 and for cross-references A265606. - Peter Luschny, Dec 31 2015
This is the lower triagonal Sheffer matrix of the associated or Jabotinsky type |S1| = (1, -log(1-x)) (see the W. Lang link under A006232 for the notation and references). This implies the e.g.f.s given below. |S1| is the transition matrix from the monomial basis {x^n} to the rising factorial basis {risefac(x,n)}, n >= 0. - Wolfdieter Lang, Feb 21 2017
T(n, k), for n >= k >= 1, is also the total volume of the n-k dimensional cell (polytope) built from the n-k orthogonal vectors of pairwise different lengths chosen from the set {1, 2, ..., n-1}. See the elementary symmetric function formula for T(n, k) and an example below. - Wolfdieter Lang, May 28 2017
From Wolfdieter Lang, Jul 20 2017: (Start)
The compositional inverse w.r.t. x of y = y(t;x) = x*(1 - t(-log(1-x)/x)) = x + t*log(1-x) is x = x(t;y) = ED(y,t) := Sum_{d>=0} D(d,t)*y^(d+1)/(d+1)!, the e.g.f. of the o.g.f.s D(d,t) = Sum_{m>=0} T(d+m, m)*t^m of the diagonal sequences of the present triangle. See the P. Bala link for a proof (there d = n-1, n >= 1, is the label for the diagonals).
This inversion gives D(d,t) = P(d, t)/(1-t)^(2*d+1), with the numerator polynomials P(d, t) = Sum_{m=0..d} A288874(d, m)*t^m. See an example below. See also the P. Bala formula in A112007. (End)
For n > 0, T(n,k) is the number of permutations of the integers from 1 to n which have k visible digits when viewed from a specific end, in the sense that a higher value hides a lower one in a subsequent position. - Ian Duff, Jul 12 2019

Examples

			Triangle T(n,k) begins:
  1;
  0,    1;
  0,    1,     1;
  0,    2,     3,     1;
  0,    6,    11,     6,    1;
  0,   24,    50,    35,   10,    1;
  0,  120,   274,   225,   85,   15,   1;
  0,  720,  1764,  1624,  735,  175,  21,  1;
  0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1;
  ...
---------------------------------------------------
Production matrix is
  0, 1
  0, 1, 1
  0, 1, 2,  1
  0, 1, 3,  3,  1
  0, 1, 4,  6,  4,  1
  0, 1, 5, 10, 10,  5,  1
  0, 1, 6, 15, 20, 15,  6, 1
  0, 1, 7, 21, 35, 35, 21, 7, 1
  ...
From _Wolfdieter Lang_, May 09 2017: (Start)
Three term recurrence: 50 = T(5, 2) = 1*6 + (5-1)*11 = 50.
Recurrence from the Sheffer a-sequence [1, 1/2, 1/6, 0, ...]: 50 = T(5, 2) = (5/2)*(binomial(1, 1)*1*6 + binomial(2, 1)*(1/2)*11 + binomial(3, 1)*(1/6)*6 + 0) = 50. The vanishing z-sequence produces the k=0 column from T(0, 0) = 1. (End)
Elementary symmetric function T(4, 2) = sigma^{(3)}_2 = 1*2 + 1*3 + 2*3 = 11. Here the cells (polytopes) are 3 rectangles with total area 11. - _Wolfdieter Lang_, May 28 2017
O.g.f.s of diagonals: d=2 (third diagonal) [0, 6, 50, ...] has D(2,t) = P(2, t)/(1-t)^5, with P(2, t) = 2 + t, the n = 2 row of A288874. - _Wolfdieter Lang_, Jul 20 2017
Boas-Buck recurrence for column k = 2 and n = 5: T(5, 2) = (5!*2/3)*((3/8)*T(2,2)/2! + (5/12)*T(3,2)/3! + (1/2)*T(4,2)/4!) = (5!*2/3)*(3/16 + (5/12)*3/3! + (1/2)*11/4!) = 50. The beta sequence begins: {1/2, 5/12, 3/8, ...}. - _Wolfdieter Lang_, Aug 11 2017
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 31, 187, 441, 996.
  • R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., Table 259, p. 259.
  • Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 149-150

Crossrefs

Essentially a duplicate of A048994. Cf. A008275, A008277, A112007, A130534, A288874, A354795.

Programs

  • Haskell
    a132393 n k = a132393_tabl !! n !! k
    a132393_row n = a132393_tabl !! n
    a132393_tabl = map (map abs) a048994_tabl
    -- Reinhard Zumkeller, Nov 06 2013
    
  • Maple
    a132393_row := proc(n) local k; seq(coeff(expand(pochhammer (x,n)),x,k),k=0..n) end: # Peter Luschny, Nov 28 2010
  • Mathematica
    p[t_] = 1/(1 - t)^x; Table[ ExpandAll[(n!)SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[(n!)* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a] (* Roger L. Bagula, Apr 18 2008 *)
    Flatten[Table[Abs[StirlingS1[n,i]],{n,0,10},{i,0,n}]] (* Harvey P. Dale, Feb 04 2014 *)
  • Maxima
    create_list(abs(stirling1(n,k)),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • PARI
    column(n,k) = my(v1, v2); v1 = vector(n-1, i, 0); v2 = vector(n, i, 0); v2[1] = 1; for(i=1, n-1, v1[i] = (i+k)*(i+k-1)/2*v2[i]; for(j=1, i-1, v1[j] *= (i-j)*(i+k)/(i-j+2)); v2[i+1] = vecsum(v1)/i); v2 \\ generates n first elements of the k-th column starting from the first nonzero element. - Mikhail Kurkov, Mar 05 2025

Formula

T(n,k) = T(n-1,k-1)+(n-1)*T(n-1,k), n,k>=1; T(n,0)=T(0,k); T(0,0)=1.
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000142(n), A001147(n), A007559(n), A007696(n), A008548(n), A008542(n), A045754(n), A045755(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Nov 13 2007
Expand 1/(1-t)^x = Sum_{n>=0}p(x,n)*t^n/n!; then the coefficients of the p(x,n) produce the triangle. - Roger L. Bagula, Apr 18 2008
Sum_{k=0..n} T(n,k)*2^k*x^(n-k) = A000142(n+1), A000165(n), A008544(n), A001813(n), A047055(n), A047657(n), A084947(n), A084948(n), A084949(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Sep 18 2008
a(n) = Sum_{k=0..n} T(n,k)*3^k*x^(n-k) = A001710(n+2), A001147(n+1), A032031(n), A008545(n), A047056(n), A011781(n), A144739(n), A144756(n), A144758(n) for x=1,2,3,4,5,6,7,8,9,respectively. - Philippe Deléham, Sep 20 2008
Sum_{k=0..n} T(n,k)*4^k*x^(n-k) = A001715(n+3), A002866(n+1), A007559(n+1), A047053(n), A008546(n), A049308(n), A144827(n), A144828(n), A144829(n) for x=1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Sep 21 2008
Sum_{k=0..n} x^k*T(n,k) = x*(1+x)*(2+x)*...*(n-1+x), n>=1. - Philippe Deléham, Oct 17 2008
From Wolfdieter Lang, Feb 21 2017: (Start)
E.g.f. k-th column: (-log(1 - x))^k, k >= 0.
E.g.f. triangle (see the Apr 18 2008 Baluga comment): exp(-x*log(1-z)).
E.g.f. a-sequence: x/(1 - exp(-x)). See A164555/A027642. The e.g.f. for the z-sequence is 0. (End)
From Wolfdieter Lang, May 28 2017: (Start)
The row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k, for n >= 0, are R(n, x) = risefac(x,n-1) := Product_{j=0..n-1} x+j, with the empty product for n=0 put to 1. See the Feb 21 2017 comment above. This implies:
T(n, k) = sigma^{(n-1)}_(n-k), for n >= k >= 1, with the elementary symmetric functions sigma^{(n-1)}_m of degree m in the n-1 symbols 1, 2, ..., n-1, with binomial(n-1, m) terms. See an example below.(End)
Boas-Buck type recurrence for column sequence k: T(n, k) = (n!*k/(n - k)) * Sum_{p=k..n-1} beta(n-1-p)*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, and beta(k) = A002208(k+1)/A002209(k+1). See a comment and references in A286718. - Wolfdieter Lang, Aug 11 2017
T(n,k) = Sum_{j=k..n} j^(j-k)*binomial(j-1, k-1)*A354795(n,j) for n > 0. - Mélika Tebni, Mar 02 2023
n-th row polynomial: n!*Sum_{k = 0..2*n} (-1)^k*binomial(-x, k)*binomial(-x, 2*n-k) = n!*Sum_{k = 0..2*n} (-1)^k*binomial(1-x, k)*binomial(-x, 2*n-k). - Peter Bala, Mar 31 2024
From Mikhail Kurkov, Mar 05 2025: (Start)
For a general proof of the formulas below via generating functions, see Mathematics Stack Exchange link.
Recursion for the n-th row (independently of other rows): T(n,k) = 1/(n-k)*Sum_{j=2..n-k+1} binomial(-k,j)*T(n,k+j-1)*(-1)^j for 1 <= k < n with T(n,n) = 1.
Recursion for the k-th column (independently of other columns): T(n,k) = 1/(n-k)*Sum_{j=2..n-k+1} (j-2)!*binomial(n,j)*T(n-j+1,k) for 1 <= k < n with T(n,n) = 1 (see Fedor Petrov link). (End)

A008546 Quintuple factorial numbers: Product_{k = 0..n-1} (5*k + 4).

Original entry on oeis.org

1, 4, 36, 504, 9576, 229824, 6664896, 226606464, 8837652096, 388856692224, 19053977918976, 1028914807624704, 60705973649857536, 3885182313590882304, 268077579637770878976, 19837740893195045044224, 1567181530562408558493696, 131643248567242318913470464
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Crossrefs

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 5*k+4 )); # G. C. Greubel, Aug 20 2019
  • Magma
    [1] cat [(&*[5*k+4: k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 20 2019
    
  • Maple
    f:= n-> product(5*k+4, k=0..n-1);
  • Mathematica
    FoldList[Times, 1, 5Range[0, 20] + 4] (* Vincenzo Librandi, Jun 10 2013 *)
    CoefficientList[Series[(1 - 5x)^(-4/5), {x, 0, 20}], x] Range[0, 20]! (* Vaclav Kotesovec, Jan 28 2015 *)
    Table[5^n Pochhammer[4/5, n], {n, 0, 20}] (* G. C. Greubel, Aug 20 2019 *)
  • PARI
    vector(20, n, n--; prod(j=0,n-1, 5*j+4) ) \\ G. C. Greubel, Aug 20 2019
    
  • Sage
    [5^n*rising_factorial(4/5, n) for n in (0..20)] # G. C. Greubel, Aug 20 2019
    

Formula

a(n) = 4*A034301(n) = (5*n - 1)(!^5), n >= 1, with a(0) = 1.
a(n) = A011801(n + 1, 1) (first column of triangle).
a(n) ~ (sqrt(2*Pi)/Gamma(4/5))*n^(n + 3/10)*(5/e)^n*(1 + 1/(300*n) + ...). - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
G.f.: 1/(1 - 4*x/(1 - 5*x/(1 - 9*x/(1 - 10*x/(1 - 14*x/(1 - 15*x/(1 - 19*x/(1 - 20*x/(1 - 24*x/(1 - ... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-1)^n*Sum_{k = 0..n} 5^k*s(n + 1, n + 1 - k), where s(n, k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: ( 1 - 1/Q(0) )/x where Q(k) = 1 - x*(5*k - 1)/(1 - x*(5*k + 5)/Q(k + 1) ); (continued fraction); e.g.f. (1 - 5*x)^(-4/5). - Sergei N. Gladkovskii, Mar 20 2013
G.f.: 1/x - G(0)/(2*x), where G(k) = 1 + 1/(1 - x*(5*k - 1)/(x*(5*k - 1) + 1/G(k + 1))); (continued fraction). - Sergei N. Gladkovskii, May 27 2013
a(n) = 5^n * Gamma(n + 4/5) / Gamma(4/5). - Vaclav Kotesovec, Jan 28 2015
a(n) + (-5*n + 1)*a(n - 1) = 0. - R. J. Mathar, Sep 04 2016
G.f.: 1/(1 - 4*x - 20*x^2/(1 - 14*x - 90*x^2/(1 - 24*x - 210*x^2/(1 - 34*x - 380*x^2/(1 - 44*x - 600*x^2/(1 - 54*x - 870*x^2/(1 - ...))))))) (Jacobi continued fraction). - Nikolaos Pantelidis, Feb 29 2020
Sum_{n>=0} 1/a(n) = 1 + (e/5)^(1/5)*(Gamma(4/5) - Gamma(4/5, 1/5)). - Amiram Eldar, Dec 19 2022

A047055 Quintuple factorial numbers: a(n) = Product_{k=0..n-1} (5*k + 2).

Original entry on oeis.org

1, 2, 14, 168, 2856, 62832, 1696464, 54286848, 2008613376, 84361761792, 3965002804224, 206180145819648, 11752268311719936, 728640635326636032, 48818922566884614144, 3514962424815692218368, 270652106710808300814336, 22193472750286280666775552
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

Hankel transform is A169621. - Paul Barry, Dec 03 2009

Crossrefs

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> (5*k+2) )); # G. C. Greubel, Aug 17 2019
  • Magma
    [1] cat [(&*[(5*k+2): k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 17 2019
    
  • Maple
    a := n->product(5*i+2,i=0..n-1); [seq(a(j),j=0..30)];
  • Mathematica
    Table[5^n*Pochhammer[2/5, n], {n,0,20}] (* G. C. Greubel, Aug 17 2019 *)
    Join[{1},FoldList[Times,5*Range[0,20]+2]] (* Harvey P. Dale, Apr 03 2025 *)
  • PARI
    vector(20, n, n--; prod(k=0,n-1, 5*k+2)) \\ G. C. Greubel, Aug 17 2019
    
  • Sage
    [product((5*k+2) for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 17 2019
    

Formula

E.g.f. (1-5*x)^(-2/5).
a(n) ~ sqrt(2*Pi)/Gamma(2/5)*n^(-1/10)*(5n/e)^n*(1 - (11/300)/n - ...). - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
a(n) = A084940(n)/A000142(n)*A000079(n) = 5^n*Pochhammer(2/5, n) = 5^n*Gamma(n+2/5)*sin(2*Pi/5)*Gamma(3/5)/Pi. - Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
G.f.: 1/(1-2x/(1-5x/(1-7x/(1-10x/(1-12x/(1-15x/(1-17x/(1-20x/(1-22x/(1-25x/(1-.../(1-A047215(n+1)*x/(1-... (continued fraction). - Paul Barry, Dec 03 2009
a(n) = (-3)^n*Sum_{k=0..n} (5/3)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
D-finite with recurrence: a(n) +(-5*n+3)*a(n-1) = 0. - R. J. Mathar, Dec 03 2012
G.f.: 1/G(0) where G(k) = 1 - x*(5*k+2)/( 1 - 5*x*(k+1)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 23 2013
Sum_{n>=0} 1/a(n) = 1 + (e/5^3)^(1/5)*(Gamma(2/5) - Gamma(2/5, 1/5)). - Amiram Eldar, Dec 19 2022

A052562 a(n) = 5^n * n!.

Original entry on oeis.org

1, 5, 50, 750, 15000, 375000, 11250000, 393750000, 15750000000, 708750000000, 35437500000000, 1949062500000000, 116943750000000000, 7601343750000000000, 532094062500000000000, 39907054687500000000000
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

A simple regular expression in a labeled universe.
For n >= 1 a(n) is the order of the wreath product of the symmetric group S_n and the Abelian group (C_5)^n. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 07 2001

Crossrefs

Programs

  • Magma
    [5^n*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 05 2011
    
  • Maple
    spec := [S,{S=Sequence(Union(Z,Z,Z,Z,Z))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    with(combstruct):A:=[N,{N=Cycle(Union(Z$5))},labeled]: seq(count(A,size=n)/5,n=1..16); # Zerinvary Lajos, Dec 05 2007
  • Mathematica
    Table[5^n*n!, {n, 0, 20}] (* Wesley Ivan Hurt, Sep 28 2013 *)
  • PARI
    {a(n) = 5^n*n!}; \\ G. C. Greubel, May 05 2019
    
  • Sage
    [5^n*factorial(n) for n in (0..20)] # G. C. Greubel, May 05 2019

Formula

a(n) = A051150(n+1, 0) (first column of triangle).
E.g.f.: 1/(1-5*x).
a(n) = 5*n*a(n-1) with a(0)=1.
G.f.: 1/(1-5*x/(1-5*x/(1-10*x/(1-10*x/(1-15*x/(1-15*x/(1-20*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
G.f.: 1/Q(0), where Q(k) = 1 - 5*x*(2*k+1) - 25*x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 28 2013
a(n) = n!*A000351(n). - R. J. Mathar, Aug 21 2014
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = e^(1/5) (A092514).
Sum_{n>=0} (-1)^n/a(n) = e^(-1/5) (A092618). (End)

Extensions

Name changed by Arkadiusz Wesolowski, Oct 04 2011

A085157 Quintuple factorials, 5-factorials, n!!!!!, n!5.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 14, 24, 36, 50, 66, 168, 312, 504, 750, 1056, 2856, 5616, 9576, 15000, 22176, 62832, 129168, 229824, 375000, 576576, 1696464, 3616704, 6664896, 11250000, 17873856, 54286848, 119351232, 226606464, 393750000, 643458816
Offset: 0

Views

Author

Hugo Pfoertner, Jun 21 2003

Keywords

Comments

The term "Quintuple factorial numbers" is also used for the sequences A008546, A008548, A052562, A047055, A047056 which have a different definition. The definition given here is the one commonly used.

Examples

			a(12) = 168 because 12*a(12-5) = 12*a(7) = 12*14 = 168.
		

Crossrefs

Cf. n!:A000142, n!!:A006882, n!!!:A007661, n!!!!:A007662, n!!!!!!:A085158, 5-factorial primes: n!!!!!+1:A085148, n!!!!!-1:A085149.
Cf. A288092.

Programs

  • GAP
    a:= function(n)
        if n<1 then return 1;
        else return n*a(n-5);
        fi;
      end;
    List([0..40], n-> a(n) ); # G. C. Greubel, Aug 18 2019
    
  • Magma
    b:= func< n | (n lt 6) select n else n*Self(n-5) >;
    [1] cat [b(n): n in [1..40]]; // G. C. Greubel, Aug 18 2019
    
  • Maple
    a:= n-> `if`(n < 1, 1, n*a(n-5)) end proc; seq(a(n), n = 0..40); # G. C. Greubel, Aug 18 2019
  • Mathematica
    a[n_]:= If[n<1, 1, n*a[n-5]]; Table[a[n], {n,0,40}] (* G. C. Greubel, Aug 18 2019 *)
    Table[Times@@Range[n,1,-5],{n,0,40}] (* Harvey P. Dale, May 12 2020 *)
  • PARI
    a(n)=if(n<1, 1, n*a(n-5))
    for(n=0,50,print1(a(n),",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Oct 19 2006
    
  • Python
    def A085157(n):
        if n <= 0:
            return 1
        else:
            return n*A085157(n-5)
    n = 0
    while n <= 40:
        print(n,A085157(n))
        n = n+1 # A.H.M. Smeets, Aug 18 2019
  • Sage
    def a(n):
        if (n<1): return 1
        else: return n*a(n-5)
    [a(n) for n in (0..40)] # G. C. Greubel, Aug 18 2019
    

Formula

a(n) = 1 for n < 1, otherwise a(n) = n*a(n-5).
Sum_{n>=0} 1/a(n) = A288092. - Amiram Eldar, Nov 10 2020

A144739 7-factorial numbers A114799(7*n+3): Partial products of A017017(k) = 7*k+3, a(0) = 1.

Original entry on oeis.org

1, 3, 30, 510, 12240, 379440, 14418720, 648842400, 33739804800, 1990648483200, 131382799891200, 9590944392057600, 767275551364608000, 66752972968720896000, 6274779459059764224000, 633752725365036186624000, 68445294339423908155392000, 7871208849033749437870080000
Offset: 0

Views

Author

Philippe Deléham, Sep 20 2008

Keywords

Examples

			a(0)=1, a(1)=3, a(2)=3*10=30, a(3)=3*10*17=510, a(4)=3*10*17*24=12240, ...
		

Crossrefs

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 7*k+3) ); # G. C. Greubel, Aug 19 2019
  • Magma
    [ 1 ] cat [ &*[ (7*k+3): k in [0..n] ]: n in [0..20] ]; // Klaus Brockhaus, Nov 10 2008
    
  • Maple
    a:= n-> product(7*j+3, j=0..n-1); seq(a(n), n=0..20); # G. C. Greubel, Aug 19 2019
  • Mathematica
    Table[7^n*Pochhammer[3/7, n], {n,0,20}] (* G. C. Greubel, Aug 19 2019 *)
  • PARI
    a(n)=prod(i=1,n,7*i-4) \\ Charles R Greathouse IV, Jul 02 2013
    
  • Sage
    [product(7*k+3 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 19 2019
    

Formula

a(n) = Sum_{k=0..n} A132393(n,k)*3^k*7^(n-k).
G.f.: 1/(1-3*x/(1-7*x/(1-10*x/(1-14*x/(1-17*x/(1-21*x/(1-24*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-4)^n*Sum_{k=0..n} (7/4)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
From Ilya Gutkovskiy, Mar 23 2017: (Start)
E.g.f.: 1/(1 - 7*x)^(3/7).
a(n) ~ sqrt(2*Pi)*7^n*n^n/(exp(n)*n^(1/14)*Gamma(3/7)). (End)
a(n) = A114799(7*n-4). - M. F. Hasler, Feb 23 2018
D-finite with recurrence: a(n) +(-7*n+4)*a(n-1)=0. - R. J. Mathar, Feb 21 2020
Sum_{n>=0} 1/a(n) = 1 + (e/7^4)^(1/7)*(Gamma(3/7) - Gamma(3/7, 1/7)). - Amiram Eldar, Dec 19 2022

A034300 a(n) = n-th quintic factorial number divided by 3.

Original entry on oeis.org

1, 8, 104, 1872, 43056, 1205568, 39783744, 1511782272, 65006637696, 3120318609408, 165376886298624, 9591859405320192, 604287142535172096, 41091525692391702528, 2999681375544594284544, 233975147292478354194432, 19419937225275703398137856, 1708954475824261899036131328
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([1..25], n-> Product([1..n], k-> 5*k-2)/3 ); # G. C. Greubel, Aug 23 2019
  • Magma
    [(&*[5*k-2: k in [1..n]])/3: n in [1..25]]; // G. C. Greubel, Aug 23 2019
    
  • Maple
    a:= n-> mul(5*k-2, k=1..n)/3; seq(a(n), n=1..25); # G. C. Greubel, Aug 23 2019
  • Mathematica
    Table[Product[5j-2,{j,n}],{n,20}]*1/3 (* Harvey P. Dale, Jul 25 2011 *)
  • PARI
    a(n) = prod(k=1,n, 5*k-2)/3;
    vector(25, n, a(n)) \\ G. C. Greubel, Aug 23 2019
    
  • Sage
    [5^n*rising_factorial(3/5, n)/3 for n in (1..25)] # G. C. Greubel, Aug 23 2019
    

Formula

3*a(n) = (5*n-2)(!^5) = Product_{j=1..n} (5*j-2) = A047056(n).
E.g.f.: (1-5*x)^(-3/5)/3.
a(n) ~ sqrt(2*Pi) * 5/(3*Gamma(3/5)) * n^(11/10) * (5*n/e)^n * (1 + (169/300)/n - ...). - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
a(n) = 5^n * Pochhammer(3/5, n)/3. - G. C. Greubel, Aug 23 2019
D-finite with recurrence: a(n) +(-5*n+2)*a(n-1)=0. - R. J. Mathar, Feb 20 2020
Sum_{n>=1} 1/a(n) = 3*(e/5^2)^(1/5)*(Gamma(3/5) - Gamma(3/5, 1/5)). - Amiram Eldar, Dec 19 2022

Extensions

Terms a(17) onward added by G. C. Greubel, Aug 23 2019

A144758 Partial products of successive terms of A017197.

Original entry on oeis.org

1, 3, 36, 756, 22680, 884520, 42456960, 2420046720, 159723083520, 11979231264000, 1006255426176000, 93581754634368000, 9545338972705536000, 1059532625970314496000, 127143915116437739520000, 16401565050020468398080000, 2263415976902824638935040000
Offset: 0

Views

Author

Philippe Deléham, Sep 20 2008

Keywords

Examples

			a(0)=1, a(1)=3, a(2)=3*12=36, a(3)=3*12*21=756, a(4)=3*12*21*30=22680, ...
		

Crossrefs

Programs

  • Magma
    [Round(9^n*Gamma(n+1/3)/Gamma(1/3)): n in [0..20]]; // G. C. Greubel, Dec 03 2019
    
  • Maple
    seq(9^n*pochhammer(1/3, n), n = 0..20); # G. C. Greubel, Dec 03 2019
  • Mathematica
    Table[9^n*Pochhammer[1/3, n], {n, 0, 20}] (* G. C. Greubel, Dec 03 2019 *)
    Join[{1},FoldList[Times,NestList[#+9&,3,20]]] (* Harvey P. Dale, Mar 09 2025 *)
  • PARI
    a(n)=3^n*prod(i=1,n,3*i-2) \\ Charles R Greathouse IV, Jan 17 2012
    
  • Sage
    [9^n*rising_factorial(1/3, n) for n in (0..20)] # G. C. Greubel, Dec 03 2019

Formula

a(n) = Sum_{k=0..n} A132393(n,k)*3^k*9^(n-k).
a(n) = (-6)^n*Sum_{k=0..n} (3/2)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
Sum_{n>=0} 1/a(n) = 1 + (e/9^6)^(1/9)*(Gamma(1/3) - Gamma(1/3, 1/9)). - Amiram Eldar, Dec 21 2022

A129116 Multifactorial array: A(k,n) = k-tuple factorial of n, for positive n, read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 2, 6, 1, 2, 3, 24, 1, 2, 3, 8, 120, 1, 2, 3, 4, 15, 720, 1, 2, 3, 4, 10, 48, 5040, 1, 2, 3, 4, 5, 18, 105, 40320, 1, 2, 3, 4, 5, 12, 28, 384, 362880, 1, 2, 3, 4, 5, 6, 21, 80, 945, 3628800, 1, 2, 3, 4, 5, 6, 14, 32, 162, 3840, 39916800, 1, 2, 3, 4, 5, 6, 7, 24, 45, 280, 10395, 479001600
Offset: 1

Views

Author

Jonathan Vos Post, May 24 2007

Keywords

Comments

The term "Quintuple factorial numbers" is also used for the sequences A008546, A008548, A052562, A047055, A047056 which have a different definition. The definition given here is the one commonly used. This problem exists for the other rows as well. "n!2" = n!!, "n!3" = n!!!, "n!4" = n!!!!, etcetera. Main diagonal is A[n,n] = n!n = n.
Similar to A114423 (with rows and columns exchanged). - Georg Fischer, Nov 02 2021

Examples

			Table begins:
  k / A(k,n)
  1 | 1 2 6 24 120 720 5040 40320 362880 3628800 ... = A000142.
  2 | 1 2 3  8  15  48  105   384    945    3840 ... = A006882.
  3 | 1 2 3  4  10  18   28    80    162     280 ... = A007661.
  4 | 1 2 3  4   5  12   21    32     45     120 ... = A007662.
  5 | 1 2 3  4   5   6   14    24     36      50 ... = A085157.
  6 | 1 2 3  4   5   6    7    16     27      40 ... = A085158.
		

Crossrefs

Cf. A000142 (n!), A006882 (n!!), A007661 (n!!!), A007662(n!4), A085157 (n!5), A085158 (n!6), A114799 (n!7), A114800 (n!8), A114806 (n!9), A288327 (n!10).
Cf. A114423 (transposed).

Programs

  • Maple
    A:= proc(k,n) option remember; if n >= 1 then n* A(k, n-k) elif n >= 1-k then 1 else 0 fi end: seq(seq(A(1+d-n, n), n=1..d), d=1..16); # Alois P. Heinz, Feb 02 2009
  • Mathematica
    A[k_, n_] := A[k, n] = If[n >= 1, n*A[k, n-k], If[n >= 1-k, 1, 0]]; Table[ A[1+d-n, n], {d, 1, 16}, {n, 1, d}] // Flatten (* Jean-François Alcover, May 27 2016, after Alois P. Heinz *)

Formula

A(k,n) = n!k.
A(k,n) = M(n,k) in A114423. - Georg Fischer, Nov 02 2021

Extensions

Corrected and extended by Alois P. Heinz, Feb 02 2009

A144756 Partial products of successive terms of A017101; a(0)=1 .

Original entry on oeis.org

1, 3, 33, 627, 16929, 592515, 25478145, 1299385395, 76663738305, 5136470466435, 385235284982625, 31974528653557875, 2909682107473766625, 288058528639902895875, 30822262564469609858625, 3544560194914005133741875, 435980903974422631450250625, 57113498420649364719982831875
Offset: 0

Views

Author

Philippe Deléham, Sep 20 2008

Keywords

Examples

			a(0)=1, a(1)=3, a(2)=3*11=33, a(3)=3*11*19=627, a(4)=3*11*19*27=16929, ...
		

Crossrefs

Programs

  • Mathematica
    Join[{1},FoldList[Times,8Range[0,20]+3]] (* Harvey P. Dale, Aug 11 2019 *)

Formula

a(n) = Sum_{k=0..n} A132393(n,k)*3^k*8^(n-k).
a(n) = (-5)^n*sum_{k=0..n} (8/5)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 2/G(0), where G(k)= 1 + 1/(1 - 2*x*(8*k+3)/(2*x*(8*k+3) - 1 + 16*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
a(n) +(-8*n+5)*a(n-1)=0. - R. J. Mathar, Sep 04 2016
From Ilya Gutkovskiy, Mar 23 2017: (Start)
E.g.f.: 1/(1 - 8*x)^(3/8).
a(n) ~ sqrt(2*Pi)*8^n*n^n/(exp(n)*n^(1/8)*Gamma(3/8)). (End)
Sum_{n>=0} 1/a(n) = 1 + (e/8^5)^(1/8)*(Gamma(3/8) - Gamma(3/8, 1/8)). - Amiram Eldar, Dec 20 2022

Extensions

a(11) corrected by Ilya Gutkovskiy, Mar 23 2017
Showing 1-10 of 14 results. Next