cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A155718 Symmetrical form of A039683 using polynomials: p(x,n)=Product[x - (2*i), {i, 0, Floor[n/2]}]/x; t(n,m)=coefficients(p(x,n)+x^n*p(1/x,n)); t(n,m)=A039683(n,m)+A039683(n,n-m).

Original entry on oeis.org

2, -1, -1, 9, -12, 9, -47, 32, 32, -47, 385, -420, 280, -420, 385, -3839, 4354, -1460, -1460, 4354, -3839, 46081, -56490, 26684, -11760, 26684, -56490, 46081, -645119, 836296, -418936, 92624, 92624, -418936, 836296, -645119, 10321921, -14026824
Offset: 0

Views

Author

Roger L. Bagula, Jan 25 2009

Keywords

Comments

Row sums are:
{2, -2, 6, -30, 210, -1890, 20790, -270270, 4054050, -68918850, 1309458150,...}.
The Stirling product form is: as even- odd factorization;
Product[x-i,{i,0,n}]=Product[x-(2*i),{i,0,Floor[n/2]}]*Product[x-(2*i+1),{i,0,Floor[n/2]}]

Examples

			{2},
{-1, -1},
{9, -12, 9},
{-47, 32, 32, -47},
{385, -420, 280, -420, 385},
{-3839, 4354, -1460, -1460, 4354, -3839},
{46081, -56490, 26684, -11760, 26684, -56490, 46081},
{-645119, 836296, -418936, 92624, 92624, -418936, 836296, -645119},
{10321921, -14026824, 7562120, -2189376, 718368, -2189376, 7562120, -14026824, 10321921},
{-185794559, 262803366, -150102120, 46239920, -7606032, -7606032, 46239920, -150102120, 262803366, -185794559},
{3715891201, -5441863790, 3264920736, -1076561200, 221207888, -57731520, 221207888, -1076561200, 3264920736, -5441863790, 3715891201}
		

Crossrefs

Programs

  • Mathematica
    Clear[p, x, n, b, a, b0];
    p[x_, n_] := Product[x - (2*i), {i, 0, Floor[n/2]}]/x;
    Table[Expand[ CoefficientList[ExpandAll[p[x, n]], x] + Reverse[CoefficientList[ExpandAll[p[x, n]], x]]], {n, 0, 20, 2}];
    Flatten[%]

Formula

p(x,n)=Product[x - (2*i), {i, 0, Floor[n/2]}]/x;
t(n,m)=coefficients(p(x,n)+x^n*p(1/x,n));
t(n,m)=A039683(n,m)+A039683(n,n-m).

A001147 Double factorial of odd numbers: a(n) = (2*n-1)!! = 1*3*5*...*(2*n-1).

Original entry on oeis.org

1, 1, 3, 15, 105, 945, 10395, 135135, 2027025, 34459425, 654729075, 13749310575, 316234143225, 7905853580625, 213458046676875, 6190283353629375, 191898783962510625, 6332659870762850625, 221643095476699771875, 8200794532637891559375, 319830986772877770815625
Offset: 0

Views

Author

Keywords

Comments

The solution to Schröder's third problem.
Number of fixed-point-free involutions in symmetric group S_{2n} (cf. A000085).
a(n-2) is the number of full Steiner topologies on n points with n-2 Steiner points. [corrected by Lyle Ramshaw, Jul 20 2022]
a(n) is also the number of perfect matchings in the complete graph K(2n). - Ola Veshta (olaveshta(AT)my-deja.com), Mar 25 2001
Number of ways to choose n disjoint pairs of items from 2*n items. - Ron Zeno (rzeno(AT)hotmail.com), Feb 06 2002
Number of ways to choose n-1 disjoint pairs of items from 2*n-1 items (one item remains unpaired). - Bartosz Zoltak, Oct 16 2012
For n >= 1 a(n) is the number of permutations in the symmetric group S_(2n) whose cycle decomposition is a product of n disjoint transpositions. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 21 2001
a(n) is the number of distinct products of n+1 variables with commutative, nonassociative multiplication. - Andrew Walters (awalters3(AT)yahoo.com), Jan 17 2004. For example, a(3)=15 because the product of the four variables w, x, y and z can be constructed in exactly 15 ways, assuming commutativity but not associativity: 1. w(x(yz)) 2. w(y(xz)) 3. w(z(xy)) 4. x(w(yz)) 5. x(y(wz)) 6. x(z(wy)) 7. y(w(xz)) 8. y(x(wz)) 9. y(z(wx)) 10. z(w(xy)) 11. z(x(wy)) 12. z(y(wx)) 13. (wx)(yz) 14. (wy)(xz) 15. (wz)(xy).
a(n) = E(X^(2n)), where X is a standard normal random variable (i.e., X is normal with mean = 0, variance = 1). So for instance a(3) = E(X^6) = 15, etc. See Abramowitz and Stegun or Hoel, Port and Stone. - Jerome Coleman, Apr 06 2004
Second Eulerian transform of 1,1,1,1,1,1,... The second Eulerian transform transforms a sequence s to a sequence t by the formula t(n) = Sum_{k=0..n} E(n,k)s(k), where E(n,k) is a second-order Eulerian number (A008517). - Ross La Haye, Feb 13 2005
Integral representation as n-th moment of a positive function on the positive axis: a(n) = Integral_{x=0..oo} x^n*exp(-x/2)/sqrt(2*Pi*x) dx, n >= 0. - Karol A. Penson, Oct 10 2005
a(n) is the number of binary total partitions of n+1 (each non-singleton block must be partitioned into exactly two blocks) or, equivalently, the number of unordered full binary trees with n+1 labeled leaves (Stanley, ex 5.2.6). - Mitch Harris, Aug 01 2006
a(n) is the Pfaffian of the skew-symmetric 2n X 2n matrix whose (i,j) entry is i for iDavid Callan, Sep 25 2006
a(n) is the number of increasing ordered rooted trees on n+1 vertices where "increasing" means the vertices are labeled 0,1,2,...,n so that each path from the root has increasing labels. Increasing unordered rooted trees are counted by the factorial numbers A000142. - David Callan, Oct 26 2006
Number of perfect multi Skolem-type sequences of order n. - Emeric Deutsch, Nov 24 2006
a(n) = total weight of all Dyck n-paths (A000108) when each path is weighted with the product of the heights of the terminal points of its upsteps. For example with n=3, the 5 Dyck 3-paths UUUDDD, UUDUDD, UUDDUD, UDUUDD, UDUDUD have weights 1*2*3=6, 1*2*2=4, 1*2*1=2, 1*1*2=2, 1*1*1=1 respectively and 6+4+2+2+1=15. Counting weights by height of last upstep yields A102625. - David Callan, Dec 29 2006
a(n) is the number of increasing ternary trees on n vertices. Increasing binary trees are counted by ordinary factorials (A000142) and increasing quaternary trees by triple factorials (A007559). - David Callan, Mar 30 2007
From Tom Copeland, Nov 13 2007, clarified in first and extended in second paragraph, Jun 12 2021: (Start)
a(n) has the e.g.f. (1-2x)^(-1/2) = 1 + x + 3*x^2/2! + ..., whose reciprocal is (1-2x)^(1/2) = 1 - x - x^2/2! - 3*x^3/3! - ... = b(0) - b(1)*x - b(2)*x^2/2! - ... with b(0) = 1 and b(n+1) = -a(n) otherwise. By the formalism of A133314, Sum_{k=0..n} binomial(n,k)*b(k)*a(n-k) = 0^n where 0^0 := 1. In this sense, the sequence a(n) is essentially self-inverse. See A132382 for an extension of this result. See A094638 for interpretations.
This sequence aerated has the e.g.f. e^(t^2/2) = 1 + t^2/2! + 3*t^4/4! + ... = c(0) + c(1)*t + c(2)*t^2/2! + ... and the reciprocal e^(-t^2/2); therefore, Sum_{k=0..n} cos(Pi k/2)*binomial(n,k)*c(k)*c(n-k) = 0^n; i.e., the aerated sequence is essentially self-inverse. Consequently, Sum_{k=0..n} (-1)^k*binomial(2n,2k)*a(k)*a(n-k) = 0^n. (End)
From Ross Drewe, Mar 16 2008: (Start)
This is also the number of ways of arranging the elements of n distinct pairs, assuming the order of elements is significant but the pairs are not distinguishable, i.e., arrangements which are the same after permutations of the labels are equivalent.
If this sequence and A000680 are denoted by a(n) and b(n) respectively, then a(n) = b(n)/n! where n! = the number of ways of permuting the pair labels.
For example, there are 90 ways of arranging the elements of 3 pairs [1 1], [2 2], [3 3] when the pairs are distinguishable: A = { [112233], [112323], ..., [332211] }.
By applying the 6 relabeling permutations to A, we can partition A into 90/6 = 15 subsets: B = { {[112233], [113322], [221133], [223311], [331122], [332211]}, {[112323], [113232], [221313], [223131], [331212], [332121]}, ....}
Each subset or equivalence class in B represents a unique pattern of pair relationships. For example, subset B1 above represents {3 disjoint pairs} and subset B2 represents {1 disjoint pair + 2 interleaved pairs}, with the order being significant (contrast A132101). (End)
A139541(n) = a(n) * a(2*n). - Reinhard Zumkeller, Apr 25 2008
a(n+1) = Sum_{j=0..n} A074060(n,j) * 2^j. - Tom Copeland, Sep 01 2008
From Emeric Deutsch, Jun 05 2009: (Start)
a(n) is the number of adjacent transpositions in all fixed-point-free involutions of {1,2,...,2n}. Example: a(2)=3 because in 2143=(12)(34), 3412=(13)(24), and 4321=(14)(23) we have 2 + 0 + 1 adjacent transpositions.
a(n) = Sum_{k>=0} k*A079267(n,k).
(End)
Hankel transform is A137592. - Paul Barry, Sep 18 2009
(1, 3, 15, 105, ...) = INVERT transform of A000698 starting (1, 2, 10, 74, ...). - Gary W. Adamson, Oct 21 2009
a(n) = (-1)^(n+1)*H(2*n,0), where H(n,x) is the probabilists' Hermite polynomial. The generating function for the probabilists' Hermite polynomials is as follows: exp(x*t-t^2/2) = Sum_{i>=0} H(i,x)*t^i/i!. - Leonid Bedratyuk, Oct 31 2009
The Hankel transform of a(n+1) is A168467. - Paul Barry, Dec 04 2009
Partial products of odd numbers. - Juri-Stepan Gerasimov, Oct 17 2010
See A094638 for connections to differential operators. - Tom Copeland, Sep 20 2011
a(n) is the number of subsets of {1,...,n^2} that contain exactly k elements from {1,...,k^2} for k=1,...,n. For example, a(3)=15 since there are 15 subsets of {1,2,...,9} that satisfy the conditions, namely, {1,2,5}, {1,2,6}, {1,2,7}, {1,2,8}, {1,2,9}, {1,3,5}, {1,3,6}, {1,3,7}, {1,3,8}, {1,3,9}, {1,4,5}, {1,4,6}, {1,4,7}, {1,4,8}, and {1,4,9}. - Dennis P. Walsh, Dec 02 2011
a(n) is the leading coefficient of the Bessel polynomial y_n(x) (cf. A001498). - Leonid Bedratyuk, Jun 01 2012
For n>0: a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = min(i,j)^2 for 1 <= i,j <= n. - Enrique Pérez Herrero, Jan 14 2013
a(n) is also the numerator of the mean value from 0 to Pi/2 of sin(x)^(2n). - Jean-François Alcover, Jun 13 2013
a(n) is the size of the Brauer monoid on 2n points (see A227545). - James Mitchell, Jul 28 2013
For n>1: a(n) is the numerator of M(n)/M(1) where the numbers M(i) have the property that M(n+1)/M(n) ~ n-1/2 (for example, large Kendell-Mann numbers, see A000140 or A181609, as n --> infinity). - Mikhail Gaichenkov, Jan 14 2014
a(n) = the number of upper-triangular matrix representations required for the symbolic representation of a first order central moment of the multivariate normal distribution of dimension 2(n-1), i.e., E[X_1*X_2...*X_(2n-2)|mu=0, Sigma]. See vignette for symmoments R package on CRAN and Phillips reference below. - Kem Phillips, Aug 10 2014
For n>1: a(n) is the number of Feynman diagrams of order 2n (number of internal vertices) for the vacuum polarization with one charged loop only, in quantum electrodynamics. - Robert Coquereaux, Sep 15 2014
Aerated with intervening zeros (1,0,1,0,3,...) = a(n) (cf. A123023), the e.g.f. is e^(t^2/2), so this is the base for the Appell sequence A099174 with e.g.f. e^(t^2/2) e^(x*t) = exp(P(.,x),t) = unsigned A066325(x,t), the probabilist's (or normalized) Hermite polynomials. P(n,x) = (a. + x)^n with (a.)^n = a_n and comprise the umbral compositional inverses for A066325(x,t) = exp(UP(.,x),t), i.e., UP(n,P(.,t)) = x^n = P(n,UP(.,t)), where UP(n,t) are the polynomials of A066325 and, e.g., (P(.,t))^n = P(n,t). - Tom Copeland, Nov 15 2014
a(n) = the number of relaxed compacted binary trees of right height at most one of size n. A relaxed compacted binary tree of size n is a directed acyclic graph consisting of a binary tree with n internal nodes, one leaf, and n pointers. It is constructed from a binary tree of size n, where the first leaf in a post-order traversal is kept and all other leaves are replaced by pointers. These links may point to any node that has already been visited by the post-order traversal. The right height is the maximal number of right-edges (or right children) on all paths from the root to any leaf after deleting all pointers. The number of unbounded relaxed compacted binary trees of size n is A082161(n). See the Genitrini et al. link. - Michael Wallner, Jun 20 2017
Also the number of distinct adjacency matrices in the n-ladder rung graph. - Eric W. Weisstein, Jul 22 2017
From Christopher J. Smyth, Jan 26 2018: (Start)
a(n) = the number of essentially different ways of writing a probability distribution taking n+1 values as a sum of products of binary probability distributions. See comment of Mitch Harris above. This is because each such way corresponds to a full binary tree with n+1 leaves, with the leaves labeled by the values. (This comment is due to Niko Brummer.)
Also the number of binary trees with root labeled by an (n+1)-set S, its n+1 leaves by the singleton subsets of S, and other nodes labeled by subsets T of S so that the two daughter nodes of the node labeled by T are labeled by the two parts of a 2-partition of T. This also follows from Mitch Harris' comment above, since the leaf labels determine the labels of the other vertices of the tree.
(End)
a(n) is the n-th moment of the chi-squared distribution with one degree of freedom (equivalent to Coleman's Apr 06 2004 comment). - Bryan R. Gillespie, Mar 07 2021
Let b(n) = 0 for n odd and b(2k) = a(k); i.e., let the sequence b(n) be an aerated version of this entry. After expanding the differential operator (x + D)^n and normal ordering the resulting terms, the integer coefficient of the term x^k D^m is n! b(n-k-m) / [(n-k-m)! k! m!] with 0 <= k,m <= n and (k+m) <= n. E.g., (x+D)^2 = x^2 + 2xD + D^2 + 1 with D = d/dx. The result generalizes to the raising (R) and lowering (L) operators of any Sheffer polynomial sequence by replacing x by R and D by L and follows from the disentangling relation e^{t(L+R)} = e^{t^2/2} e^{tR} e^{tL}. Consequently, these are also the coefficients of the reordered 2^n permutations of the binary symbols L and R under the condition LR = RL + 1. E.g., (L+R)^2 = LL + LR + RL + RR = LL + 2RL + RR + 1. (Cf. A344678.) - Tom Copeland, May 25 2021
From Tom Copeland, Jun 14 2021: (Start)
Lando and Zvonkin present several scenarios in which the double factorials occur in their role of enumerating perfect matchings (pairings) and as the nonzero moments of the Gaussian e^(x^2/2).
Speyer and Sturmfels (p. 6) state that the number of facets of the abstract simplicial complex known as the tropical Grassmannian G'''(2,n), the space of phylogenetic T_n trees (see A134991), or Whitehouse complex is a shifted double factorial.
These are also the unsigned coefficients of the x[2]^m terms in the partition polynomials of A134685 for compositional inversion of e.g.f.s, a refinement of A134991.
a(n)*2^n = A001813(n) and A001813(n)/(n+1)! = A000108(n), the Catalan numbers, the unsigned coefficients of the x[2]^m terms in the partition polynomials A133437 for compositional inversion of o.g.f.s, a refinement of A033282, A126216, and A086810. Then the double factorials inherit a multitude of analytic and combinatoric interpretations from those of the Catalan numbers, associahedra, and the noncrossing partitions of A134264 with the Catalan numbers as unsigned-row sums. (End)
Connections among the Catalan numbers A000108, the odd double factorials, values of the Riemann zeta function and its derivative for integer arguments, and series expansions of the reduced action for the simple harmonic oscillator and the arc length of the spiral of Archimedes are given in the MathOverflow post on the Riemann zeta function. - Tom Copeland, Oct 02 2021
b(n) = a(n) / (n! 2^n) = Sum_{k = 0..n} (-1)^n binomial(n,k) (-1)^k a(k) / (k! 2^k) = (1-b.)^n, umbrally; i.e., the normalized double factorial a(n) is self-inverse under the binomial transform. This can be proved by applying the Euler binomial transformation for o.g.f.s Sum_{n >= 0} (1-b.)^n x^n = (1/(1-x)) Sum_{n >= 0} b_n (x / (x-1))^n to the o.g.f. (1-x)^{-1/2} = Sum_{n >= 0} b_n x^n. Other proofs are suggested by the discussion in Watson on pages 104-5 of transformations of the Bessel functions of the first kind with b(n) = (-1)^n binomial(-1/2,n) = binomial(n-1/2,n) = (2n)! / (n! 2^n)^2. - Tom Copeland, Dec 10 2022

Examples

			a(3) = 1*3*5 = 15.
From _Joerg Arndt_, Sep 10 2013: (Start)
There are a(3)=15 involutions of 6 elements without fixed points:
  #:    permutation           transpositions
  01:  [ 1 0 3 2 5 4 ]      (0, 1) (2, 3) (4, 5)
  02:  [ 1 0 4 5 2 3 ]      (0, 1) (2, 4) (3, 5)
  03:  [ 1 0 5 4 3 2 ]      (0, 1) (2, 5) (3, 4)
  04:  [ 2 3 0 1 5 4 ]      (0, 2) (1, 3) (4, 5)
  05:  [ 2 4 0 5 1 3 ]      (0, 2) (1, 4) (3, 5)
  06:  [ 2 5 0 4 3 1 ]      (0, 2) (1, 5) (3, 4)
  07:  [ 3 2 1 0 5 4 ]      (0, 3) (1, 2) (4, 5)
  08:  [ 3 4 5 0 1 2 ]      (0, 3) (1, 4) (2, 5)
  09:  [ 3 5 4 0 2 1 ]      (0, 3) (1, 5) (2, 4)
  10:  [ 4 2 1 5 0 3 ]      (0, 4) (1, 2) (3, 5)
  11:  [ 4 3 5 1 0 2 ]      (0, 4) (1, 3) (2, 5)
  12:  [ 4 5 3 2 0 1 ]      (0, 4) (1, 5) (2, 3)
  13:  [ 5 2 1 4 3 0 ]      (0, 5) (1, 2) (3, 4)
  14:  [ 5 3 4 1 2 0 ]      (0, 5) (1, 3) (2, 4)
  15:  [ 5 4 3 2 1 0 ]      (0, 5) (1, 4) (2, 3)
(End)
G.f. = 1 + x + 3*x^2 + 15*x^3 + 105*x^4 + 945*x^5 + 10395*x^6 + 135135*x^7 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, (26.2.28).
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 317.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 228, #19.
  • Hoel, Port and Stone, Introduction to Probability Theory, Section 7.3.
  • F. K. Hwang, D. S. Richards and P. Winter, The Steiner Tree Problem, North-Holland, 1992, see p. 14.
  • C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill, 1980, pages 466-467.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.6 and also p. 178.
  • R. Vein and P. Dale, Determinants and Their Applications in Mathematical Physics, Springer-Verlag, New York, 1999, p. 73.
  • G. Watson, The Theory of Bessel Functions, Cambridge Univ. Press, 1922.

Crossrefs

Cf. A086677; A055142 (for this sequence, |a(n+1)| + 1 is the number of distinct products which can be formed using commutative, nonassociative multiplication and a nonempty subset of n given variables).
Constant terms of polynomials in A098503. First row of array A099020.
Subsequence of A248652.
Cf. A082161 (relaxed compacted binary trees of unbounded right height).
Cf. A053871 (binomial transform).

Programs

  • GAP
    A001147 := function(n) local i, s, t; t := 1; i := 0; Print(t, ", "); for i in [1 .. n] do t := t*(2*i-1); Print(t, ", "); od; end; A001147(100); # Stefano Spezia, Nov 13 2018
    
  • Haskell
    a001147 n = product [1, 3 .. 2 * n - 1]
    a001147_list = 1 : zipWith (*) [1, 3 ..] a001147_list
    -- Reinhard Zumkeller, Feb 15 2015, Dec 03 2011
    
  • Magma
    A001147:=func< n | n eq 0 select 1 else &*[ k: k in [1..2*n-1 by 2] ] >; [ A001147(n): n in [0..20] ]; // Klaus Brockhaus, Jun 22 2011
    
  • Magma
    I:=[1,3]; [1] cat [n le 2 select I[n]  else (3*n-2)*Self(n-1)-(n-1)*(2*n-3)*Self(n-2): n in [1..25] ]; // Vincenzo Librandi, Feb 19 2015
    
  • Maple
    f := n->(2*n)!/(n!*2^n);
    A001147 := proc(n) doublefactorial(2*n-1); end: # R. J. Mathar, Jul 04 2009
    A001147 := n -> 2^n*pochhammer(1/2, n); # Peter Luschny, Aug 09 2009
    G(x):=(1-2*x)^(-1/2): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..19); # Zerinvary Lajos, Apr 03 2009; aligned with offset by Johannes W. Meijer, Aug 11 2009
    series(hypergeom([1,1/2],[],2*x),x=0,20); # Mark van Hoeij, Apr 07 2013
  • Mathematica
    Table[(2 n - 1)!!, {n, 0, 19}] (* Robert G. Wilson v, Oct 12 2005 *)
    a[ n_] := 2^n Gamma[n + 1/2] / Gamma[1/2]; (* Michael Somos, Sep 18 2014 *)
    Join[{1}, Range[1, 41, 2]!!] (* Harvey P. Dale, Jan 28 2017 *)
    a[ n_] := If[ n < 0, (-1)^n / a[-n], SeriesCoefficient[ Product[1 - (1 - x)^(2 k - 1), {k, n}], {x, 0, n}]]; (* Michael Somos, Jun 27 2017 *)
    (2 Range[0, 20] - 1)!! (* Eric W. Weisstein, Jul 22 2017 *)
  • Maxima
    a(n):=if n=0 then 1 else sum(sum(binomial(n-1,i)*binomial(n-i-1,j)*a(i)*a(j)*a(n-i-j-1),j,0,n-i-1),i,0,n-1); /* Vladimir Kruchinin, May 06 2020 */
  • PARI
    {a(n) = if( n<0, (-1)^n / a(-n), (2*n)! / n! / 2^n)}; /* Michael Somos, Sep 18 2014 */
    
  • PARI
    x='x+O('x^33); Vec(serlaplace((1-2*x)^(-1/2))) \\ Joerg Arndt, Apr 24 2011
    
  • Python
    from sympy import factorial2
    def a(n): return factorial2(2 * n - 1)
    print([a(n) for n in range(101)])  # Indranil Ghosh, Jul 22 2017
    
  • Sage
    [rising_factorial(n+1,n)/2^n for n in (0..15)] # Peter Luschny, Jun 26 2012
    

Formula

E.g.f.: 1 / sqrt(1 - 2*x).
D-finite with recurrence: a(n) = a(n-1)*(2*n-1) = (2*n)!/(n!*2^n) = A010050(n)/A000165(n).
a(n) ~ sqrt(2) * 2^n * (n/e)^n.
Rational part of numerator of Gamma(n+1/2): a(n) * sqrt(Pi) / 2^n = Gamma(n+1/2). - Yuriy Brun, Ewa Dominowska (brun(AT)mit.edu), May 12 2001
With interpolated zeros, the sequence has e.g.f. exp(x^2/2). - Paul Barry, Jun 27 2003
The Ramanujan polynomial psi(n+1, n) has value a(n). - Ralf Stephan, Apr 16 2004
a(n) = Sum_{k=0..n} (-2)^(n-k)*A048994(n, k). - Philippe Deléham, Oct 29 2005
Log(1 + x + 3*x^2 + 15*x^3 + 105*x^4 + 945*x^5 + 10395*x^6 + ...) = x + 5/2*x^2 + 37/3*x^3 + 353/4*x^4 + 4081/5*x^5 + 55205/6*x^6 + ..., where [1, 5, 37, 353, 4081, 55205, ...] = A004208. - Philippe Deléham, Jun 20 2006
1/3 + 2/15 + 3/105 + ... = 1/2. [Jolley eq. 216]
Sum_{j=1..n} j/a(j+1) = (1 - 1/a(n+1))/2. [Jolley eq. 216]
1/1 + 1/3 + 2/15 + 6/105 + 24/945 + ... = Pi/2. - Gary W. Adamson, Dec 21 2006
a(n) = (1/sqrt(2*Pi))*Integral_{x>=0} x^n*exp(-x/2)/sqrt(x). - Paul Barry, Jan 28 2008
a(n) = A006882(2n-1). - R. J. Mathar, Jul 04 2009
G.f.: 1/(1-x-2x^2/(1-5x-12x^2/(1-9x-30x^2/(1-13x-56x^2/(1- ... (continued fraction). - Paul Barry, Sep 18 2009
a(n) = (-1)^n*subs({log(e)=1,x=0},coeff(simplify(series(e^(x*t-t^2/2),t,2*n+1)),t^(2*n))*(2*n)!). - Leonid Bedratyuk, Oct 31 2009
a(n) = 2^n*gamma(n+1/2)/gamma(1/2). - Jaume Oliver Lafont, Nov 09 2009
G.f.: 1/(1-x/(1-2x/(1-3x/(1-4x/(1-5x/(1- ...(continued fraction). - Aoife Hennessy (aoife.hennessy(AT)gmail.com), Dec 02 2009
The g.f. of a(n+1) is 1/(1-3x/(1-2x/(1-5x/(1-4x/(1-7x/(1-6x/(1-.... (continued fraction). - Paul Barry, Dec 04 2009
a(n) = Sum_{i=1..n} binomial(n,i)*a(i-1)*a(n-i). - Vladimir Shevelev, Sep 30 2010
E.g.f.: A(x) = 1 - sqrt(1-2*x) satisfies the differential equation A'(x) - A'(x)*A(x) - 1 = 0. - Vladimir Kruchinin, Jan 17 2011
a(n) = A123023(2*n). - Michael Somos, Jul 24 2011
a(n) = (1/2)*Sum_{i=1..n} binomial(n+1,i)*a(i-1)*a(n-i). See link above. - Dennis P. Walsh, Dec 02 2011
a(n) = Sum_{k=0..n} (-1)^k*binomial(2*n,n+k)*Stirling_1(n+k,k) [Kauers and Ko].
a(n) = A035342(n, 1), n >= 1 (first column of triangle).
a(n) = A001497(n, 0) = A001498(n, n), first column, resp. main diagonal, of Bessel triangle.
From Gary W. Adamson, Jul 19 2011: (Start)
a(n) = upper left term of M^n and sum of top row terms of M^(n-1), where M = a variant of the (1,2) Pascal triangle (Cf. A029635) as the following production matrix:
1, 2, 0, 0, 0, ...
1, 3, 2, 0, 0, ...
1, 4, 5, 2, 0, ...
1, 5, 9, 7, 2, ...
...
For example, a(3) = 15 is the left term in top row of M^3: (15, 46, 36, 8) and a(4) = 105 = (15 + 46 + 36 + 8).
(End)
G.f.: A(x) = 1 + x/(W(0) - x); W(k) = 1 + x + x*2*k - x*(2*k + 3)/W(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 17 2011
a(n) = Sum_{i=1..n} binomial(n,i-1)*a(i-1)*a(n-i). - Dennis P. Walsh, Dec 02 2011
a(n) = A009445(n) / A014481(n). - Reinhard Zumkeller, Dec 03 2011
a(n) = (-1)^n*Sum_{k=0..n} 2^(n-k)*s(n+1,k+1), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
a(n) = (2*n)4! = Gauss_factorial(2*n,4) = Product{j=1..2*n, gcd(j,4)=1} j. - Peter Luschny, Oct 01 2012
G.f.: (1 - 1/Q(0))/x where Q(k) = 1 - x*(2*k - 1)/(1 - x*(2*k + 2)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 19 2013
G.f.: 1 + x/Q(0), where Q(k) = 1 + (2*k - 1)*x - 2*x*(k + 1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 01 2013
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - 2*x*(2*k + 1)/(2*x*(2*k + 1) - 1 + 2*x*(2*k + 2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x/(x + 1/(2*k + 1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
G.f.: G(0), where G(k) = 1 + 2*x*(4*k + 1)/(4*k + 2 - 2*x*(2*k + 1)*(4*k + 3)/(x*(4*k + 3) + 2*(k + 1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 22 2013
a(n) = (2*n - 3)*a(n-2) + (2*n - 2)*a(n-1), n > 1. - Ivan N. Ianakiev, Jul 08 2013
G.f.: G(0), where G(k) = 1 - x*(k+1)/(x*(k+1) - 1/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 04 2013
a(n) = 2*a(n-1) + (2n-3)^2*a(n-2), a(0) = a(1) = 1. - Philippe Deléham, Oct 27 2013
G.f. of reciprocals: Sum_{n>=0} x^n/a(n) = 1F1(1; 1/2; x/2), confluent hypergeometric Function. - R. J. Mathar, Jul 25 2014
0 = a(n)*(+2*a(n+1) - a(n+2)) + a(n+1)*(+a(n+1)) for all n in Z. - Michael Somos, Sep 18 2014
a(n) = (-1)^n / a(-n) = 2*a(n-1) + a(n-1)^2 / a(n-2) for all n in Z. - Michael Somos, Sep 18 2014
From Peter Bala, Feb 18 2015: (Start)
Recurrence equation: a(n) = (3*n - 2)*a(n-1) - (n - 1)*(2*n - 3)*a(n-2) with a(1) = 1 and a(2) = 3.
The sequence b(n) = A087547(n), beginning [1, 4, 52, 608, 12624, ... ], satisfies the same second-order recurrence equation. This leads to the generalized continued fraction expansion lim_{n -> infinity} b(n)/a(n) = Pi/2 = 1 + 1/(3 - 6/(7 - 15/(10 - ... - n*(2*n - 1)/((3*n + 1) - ... )))). (End)
E.g.f of the sequence whose n-th element (n = 1,2,...) equals a(n-1) is 1-sqrt(1-2*x). - Stanislav Sykora, Jan 06 2017
Sum_{n >= 1} a(n)/(2*n-1)! = exp(1/2). - Daniel Suteu, Feb 06 2017
a(n) = A028338(n, 0), n >= 0. - Wolfdieter Lang, May 27 2017
a(n) = (Product_{k=0..n-2} binomial(2*(n-k),2))/n!. - Stefano Spezia, Nov 13 2018
a(n) = Sum_{i=0..n-1} Sum_{j=0..n-i-1} C(n-1,i)*C(n-i-1,j)*a(i)*a(j)*a(n-i-j-1), a(0)=1, - Vladimir Kruchinin, May 06 2020
From Amiram Eldar, Jun 29 2020: (Start)
Sum_{n>=1} 1/a(n) = sqrt(e*Pi/2)*erf(1/sqrt(2)), where erf is the error function.
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(Pi/(2*e))*erfi(1/sqrt(2)), where erfi is the imaginary error function. (End)
G.f. of reciprocals: R(x) = Sum_{n>=0} x^n/a(n) satisfies (1 + x)*R(x) = 1 + 2*x*R'(x). - Werner Schulte, Nov 04 2024

Extensions

Removed erroneous comments: neither the number of n X n binary matrices A such that A^2 = 0 nor the number of simple directed graphs on n vertices with no directed path of length two are counted by this sequence (for n = 3, both are 13). - Dan Drake, Jun 02 2009

A000165 Double factorial of even numbers: (2n)!! = 2^n*n!.

Original entry on oeis.org

1, 2, 8, 48, 384, 3840, 46080, 645120, 10321920, 185794560, 3715891200, 81749606400, 1961990553600, 51011754393600, 1428329123020800, 42849873690624000, 1371195958099968000, 46620662575398912000, 1678343852714360832000, 63777066403145711616000
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the size of the automorphism group of the graph (edge graph) of the n-dimensional hypercube and also of the geometric automorphism group of the hypercube (the two groups are isomorphic). This group is an extension of an elementary Abelian group (C_2)^n by S_n. (C_2 is the cyclic group with two elements and S_n is the symmetric group.) - Avi Peretz (njk(AT)netvision.net.il), Feb 21 2001
Then a(n) appears in the power series: sqrt(1+sin(y)) = Sum_{n>=0} (-1)^floor(n/2)*y^(n)/a(n) and sqrt((1+cos(y))/2) = Sum_{n>=0} (-1)^n*y^(2n)/a(2n). - Benoit Cloitre, Feb 02 2002
Appears to be the BinomialMean transform of A001907. See A075271. - John W. Layman, Sep 28 2002
Number of n X n monomial matrices with entries 0, +-1.
Also number of linear signed orders.
Define a "downgrade" to be the permutation d which places the items of a permutation p in descending order. This note concerns those permutations that are equal to their double-downgrades. The number of permutations of order 2n having this property are equinumerous with those of order 2n+1. a(n) = number of double-downgrading permutations of order 2n and 2n+1. - Eugene McDonnell (eemcd(AT)mac.com), Oct 27 2003
a(n) = (Integral_{x=0..Pi/2} cos(x)^(2*n+1) dx) where the denominators are b(n) = (2*n)!/(n!*2^n). - Al Hakanson (hawkuu(AT)excite.com), Mar 02 2004
1 + (1/2)x - (1/8)x^2 - (1/48)x^3 + (1/384)x^4 + ... = sqrt(1+sin(x)).
a(n)*(-1)^n = coefficient of the leading term of the (n+1)-th derivative of arctan(x), see Hildebrand link. - Reinhard Zumkeller, Jan 14 2006
a(n) is the Pfaffian of the skew-symmetric 2n X 2n matrix whose (i,j) entry is j for iDavid Callan, Sep 25 2006
a(n) is the number of increasing plane trees with n+1 edges. (In a plane tree, each subtree of the root is an ordered tree but the subtrees of the root may be cyclically rotated.) Increasing means the vertices are labeled 0,1,2,...,n+1 and each child has a greater label than its parent. Cf. A001147 for increasing ordered trees, A000142 for increasing unordered trees and A000111 for increasing 0-1-2 trees. - David Callan, Dec 22 2006
Hamed Hatami and Pooya Hatami prove that this is an upper bound on the cardinality of any minimal dominating set in C_{2n+1}^n, the Cartesian product of n copies of the cycle of size 2n+1, where 2n+1 is a prime. - Jonathan Vos Post, Jan 03 2007
This sequence and (1,-2,0,0,0,0,...) form a reciprocal pair under the list partition transform and associated operations described in A133314. - Tom Copeland, Oct 29 2007
a(n) = number of permutations of the multiset {1,1,2,2,...,n,n,n+1,n+1} such that between the two occurrences of i, there is exactly one entry >i, for i=1,2,...,n. Example: a(2) = 8 counts 121323, 131232, 213123, 231213, 232131, 312132, 321312, 323121. Proof: There is always exactly one entry between the two 1s (when n>=1). Given a permutation p in A(n) (counted by a(n)), record the position i of the first 1, then delete both 1s and subtract 1 from every entry to get a permutation q in A(n-1). The mapping p -> (i,q) is a bijection from A(n) to the Cartesian product [1,2n] X A(n-1). - David Callan, Nov 29 2007
Row sums of A028338. - Paul Barry, Feb 07 2009
a(n) is the number of ways to seat n married couples in a row so that everyone is next to their spouse. Compare A007060. - Geoffrey Critzer, Mar 29 2009
From Gary W. Adamson, Apr 21 2009: (Start)
Equals (-1)^n * (1, 1, 2, 8, 48, ...) dot (1, -3, 5, -7, 9, ...).
Example: a(4) = 384 = (1, 1, 2, 8, 48) dot (1, -3, 5, -7, 9) = (1, -3, 10, -56, 432). (End)
exp(x/2) = Sum_{n>=0} x^n/a(n). - Jaume Oliver Lafont, Sep 07 2009
Assuming n starts at 0, a(n) appears to be the number of Gray codes on n bits. It certainly is the number of Gray codes on n bits isomorphic to the canonical one. Proof: There are 2^n different starting positions for each code. Also, each code has a particular pattern of bit positions that are flipped (for instance, 1 2 1 3 1 2 1 for n=3), and these bit position patterns can be permuted in n! ways. - D. J. Schreffler (ds1404(AT)txstate.edu), Jul 18 2010
E.g.f. of 0,1,2,8,... is x/(1-2x/(2-2x/(3-8x/(4-8x/(5-18x/(6-18x/(7-... (continued fraction). - Paul Barry, Jan 17 2011
Number of increasing 2-colored trees with choice of two colors for each edge. In general, if we replace 2 with k we get the number of increasing k-colored trees. For example, for k=3 we get the triple factorial numbers. - Wenjin Woan, May 31 2011
a(n) = row sums of triangle A193229. - Gary W. Adamson, Jul 18 2011
Also the number of permutations of 2n (or of 2n+1) that are equal to their reverse-complements. (See the Egge reference.) Note that the double-downgrade described in the preceding comment (McDonnell) is equivalent to the reverse-complement. - Justin M. Troyka, Aug 11 2011
The e.g.f. can be used to form a generator, [1/(1-2x)] d/dx, for A000108, so a(n) can be applied to A145271 to generate the Catalan numbers. - Tom Copeland, Oct 01 2011
The e.g.f. of 1/a(n) is BesselI(0,sqrt(2*x)). See Abramowitz-Stegun (reference and link under A008277), p. 375, 9.6.10. - Wolfdieter Lang, Jan 09 2012
a(n) = order of the largest imprimitive group of degree 2n with n systems of imprimitivity (see [Miller], p. 203). - L. Edson Jeffery, Feb 05 2012
Row sums of triangle A208057. - Gary W. Adamson, Feb 22 2012
a(n) is the number of ways to designate a subset of elements in each n-permutation. a(n) = A000142(n) + A001563(n) + A001804(n) + A001805(n) + A001806(n) + A001807(n) + A035038(n) * n!. - Geoffrey Critzer, Nov 08 2012
For n>1, a(n) is the order of the Coxeter groups (also called Weyl groups) of types B_n and C_n. - Tom Edgar, Nov 05 2013
For m>0, k*a(m-1) is the m-th cumulant of the chi-squared probability distribution for k degrees of freedom. - Stanislav Sykora, Jun 27 2014
a(n) with 0 prepended is the binomial transform of A120765. - Vladimir Reshetnikov, Oct 28 2015
Exponential self-convolution of A001147. - Vladimir Reshetnikov, Oct 08 2016
Also the order of the automorphism group of the n-ladder rung graph. - Eric W. Weisstein, Jul 22 2017
a(n) is the order of the group O_n(Z) = {A in M_n(Z): A*A^T = I_n}, the group of n X n orthogonal matrices over the integers. - Jianing Song, Mar 29 2021
a(n) is the number of ways to tile a (3n,3n)-benzel or a (3n+1,3n+2)-benzel using left stones and two kinds of bones; see Defant et al., below. - James Propp, Jul 22 2023
a(n) is the number of labeled histories for a labeled topology with the modified lodgepole shape and n+1 cherry nodes. - Noah A Rosenberg, Jan 16 2025

Examples

			The following permutations and their reversals are all of the permutations of order 5 having the double-downgrade property:
  0 1 2 3 4
  0 3 2 1 4
  1 0 2 4 3
  1 4 2 0 3
G.f. = 1 + 2*x + 8*x^2 + 48*x^3 + 384*x^4 + 3840*x^5 + 46080*x^6 + 645120*x^7 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000142 (n!), A001147 ((2n-1)!!), A032184 (2^n*(n-1)!).
This sequence gives the row sums in A060187, and (-1)^n*a(n) the alternating row sums in A039757.
Also row sums in A028338.
Column k=2 of A329070.

Programs

  • Haskell
    a000165 n = product [2, 4 .. 2 * n]  -- Reinhard Zumkeller, Mar 28 2015
    
  • Magma
    [2^n*Factorial(n): n in [0..35]]; // Vincenzo Librandi, Apr 22 2011
    
  • Magma
    I:=[2,8]; [1] cat [n le 2 select I[n]  else (3*n-1)*Self(n-1)-2*(n-1)^2*Self(n-2): n in [1..35] ]; // Vincenzo Librandi, Feb 19 2015
    
  • Maple
    A000165 := proc(n) option remember; if n <= 1 then 1 else n*A000165(n-2); fi; end;
    ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,b))), X = Sequence(b,card >= 0)}, labelled]: seq(combstruct[count](ZL, size=n), n=0..17); # Zerinvary Lajos, Mar 26 2008
    G(x):=(1-2*x)^(-1): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..17); # Zerinvary Lajos, Apr 03 2009
    A000165 := proc(n) doublefactorial(2*n) ; end proc; seq(A000165(n),n=0..10) ; # R. J. Mathar, Oct 20 2009
  • Mathematica
    Table[(2 n)!!, {n, 30}] (* Vladimir Joseph Stephan Orlovsky, Dec 13 2008 *)
    (2 Range[0, 30])!! (* Harvey P. Dale, Jan 23 2015 *)
    RecurrenceTable[{a[n] == 2 n*a[n-1], a[0] == 1}, a, {n,0,30}] (* Ray Chandler, Jul 30 2015 *)
  • PARI
    a(n)=n!<Charles R Greathouse IV, Feb 11 2011
    
  • PARI
    {a(n) = prod( k=1, n, 2*k)}; /* Michael Somos, Jan 04 2013 */
    
  • Python
    from math import factorial
    def A000165(n): return factorial(n)<Chai Wah Wu, Jan 24 2023
    
  • SageMath
    [2^n*factorial(n) for n in range(31)] # G. C. Greubel, Jul 21 2024

Formula

E.g.f.: 1/(1-2*x).
a(n) = A001044(n)/A000142(n)*A000079(n) = Product_{i=0..n-1} (2*i+2) = 2^n*Pochhammer(1,n). - Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
D-finite with recurrence a(n) = 2*n * a(n-1), n>0, a(0)=1. - Paul Barry, Aug 26 2004
This is the binomial mean transform of A001907. See Spivey and Steil (2006). - Michael Z. Spivey (mspivey(AT)ups.edu), Feb 26 2006
a(n) = Integral_{x>=0} x^n*exp(-x/2)/2 dx. - Paul Barry, Jan 28 2008
G.f.: 1/(1-2x/(1-2x/(1-4x/(1-4x/(1-6x/(1-6x/(1-.... (continued fraction). - Paul Barry, Feb 07 2009
a(n) = A006882(2*n). - R. J. Mathar, Oct 20 2009
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) = upper left term in M^n, M = a production matrix (twice Pascal's triangle deleting the first "2", with the rest zeros; cf. A028326):
2, 2, 0, 0, 0, 0, ...
2, 4, 2, 0, 0, 0, ...
2, 6, 6, 2, 0, 0, ...
2, 8, 12, 8, 2, 0, ...
2, 10, 20, 20, 10, 2, ...
... (End)
From Sergei N. Gladkovskii, Apr 11 2013, May 01 2013, May 24 2013, Sep 30 2013, Oct 27 2013: (Start)
Continued fractions:
G.f.: 1 + x*(Q(0) - 1)/(x+1) where Q(k) = 1 + (2*k+2)/(1-x/(x+1/Q(k+1))).
G.f.: 1/Q(0) where Q(k) = 1 + 2*k*x - 2*x*(k+1)/Q(k+1).
G.f.: G(0)/2 where G(k) = 1 + 1/(1 - x*(2*k+2)/(x*(2*k+2) + 1/G(k+1))).
G.f.: 1/Q(0) where Q(k) = 1 - x*(4*k+2) - 4*x^2*(k+1)^2/Q(k+1).
G.f.: R(0) where R(k) = 1 - x*(2*k+2)/(x*(2*k+2)-1/(1-x*(2*k+2)/(x*(2*k+2) -1/R(k+1)))). (End)
a(n) = (2n-2)*a(n-2) + (2n-1)*a(n-1), n>1. - Ivan N. Ianakiev, Aug 06 2013
From Peter Bala, Feb 18 2015: (Start)
Recurrence equation: a(n) = (3*n - 1)*a(n-1) - 2*(n - 1)^2*a(n-2) with a(1) = 2 and a(2) = 8.
The sequence b(n) = A068102(n) also satisfies this second-order recurrence. This leads to the generalized continued fraction expansion lim_{n -> oo} b(n)/a(n) = log(2) = 1/(2 - 2/(5 - 8/(8 - 18/(11 - ... - 2*(n - 1)^2/((3*n - 1) - ... ))))). (End)
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = sqrt(e) (A019774).
Sum_{n>=0} (-1)^n/a(n) = 1/sqrt(e) (A092605). (End)
Limit_{n->oo} a(n)^4 / (n * A134372(n)) = Pi. - Daniel Suteu, Apr 09 2022
a(n) = 1/([x^n] hypergeom([1], [1], x/2)). - Peter Luschny, Sep 13 2024
a(n) = Sum_{k=0..n} k!*(n-k)!*binomial(n,k)^2. - Ridouane Oudra, Jul 13 2025

A038207 Triangle whose (i,j)-th entry is binomial(i,j)*2^(i-j).

Original entry on oeis.org

1, 2, 1, 4, 4, 1, 8, 12, 6, 1, 16, 32, 24, 8, 1, 32, 80, 80, 40, 10, 1, 64, 192, 240, 160, 60, 12, 1, 128, 448, 672, 560, 280, 84, 14, 1, 256, 1024, 1792, 1792, 1120, 448, 112, 16, 1, 512, 2304, 4608, 5376, 4032, 2016, 672, 144, 18, 1, 1024, 5120, 11520, 15360, 13440, 8064, 3360, 960, 180, 20, 1
Offset: 0

Views

Author

Keywords

Comments

This infinite matrix is the square of the Pascal matrix (A007318) whose rows are [ 1,0,... ], [ 1,1,0,... ], [ 1,2,1,0,... ], ...
As an upper right triangle, table rows give number of points, edges, faces, cubes,
4D hypercubes etc. in hypercubes of increasing dimension by column. - Henry Bottomley, Apr 14 2000. More precisely, the (i,j)-th entry is the number of j-dimensional subspaces of an i-dimensional hypercube (see the Coxeter reference). - Christof Weber, May 08 2009
Number of different partial sums of 1+[1,1,2]+[2,2,3]+[3,3,4]+[4,4,5]+... with entries that are zero removed. - Jon Perry, Jan 01 2004
Row sums are powers of 3 (A000244), antidiagonal sums are Pell numbers (A000129). - Gerald McGarvey, May 17 2005
Riordan array (1/(1-2x), x/(1-2x)). - Paul Barry, Jul 28 2005
T(n,k) is the number of elements of the Coxeter group B_n with descent set contained in {s_k}, 0<=k<=n-1. For T(n,n), we interpret this as the number of elements of B_n with empty descent set (since s_n does not exist). - Elizabeth Morris (epmorris(AT)math.washington.edu), Mar 01 2006
Let S be a binary relation on the power set P(A) of a set A having n = |A| elements such that for every element x, y of P(A), xSy if x is a subset of y. Then T(n,k) = the number of elements (x,y) of S for which y has exactly k more elements than x. - Ross La Haye, Oct 12 2007
T(n,k) is number of paths in the first quadrant going from (0,0) to (n,k) using only steps B=(1,0) colored blue, R=(1,0) colored red and U=(1,1). Example: T(3,2)=6 because we have BUU, RUU, UBU, URU, UUB and UUR. - Emeric Deutsch, Nov 04 2007
T(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (0,1), and two kinds of step (1,0). - Joerg Arndt, Jul 01 2011
T(i,j) is the number of i-permutations of {1,2,3} containing j 1's. Example: T(2,1)=4 because we have 12, 13, 21 and 31; T(3,2)=6 because we have 112, 113, 121, 131, 211 and 311. - Zerinvary Lajos, Dec 21 2007
Triangle of coefficients in expansion of (2+x)^n. - N-E. Fahssi, Apr 13 2008
Sum of diagonals are Jacobsthal-numbers: A001045. - Mark Dols, Aug 31 2009
Triangle T(n,k), read by rows, given by [2,0,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 15 2009
Eigensequence of the triangle = A004211: (1, 3, 11, 49, 257, 1539, ...). - Gary W. Adamson, Feb 07 2010
f-vectors ("face"-vectors) for n-dimensional cubes [see e.g., Hoare]. (This is a restatement of Bottomley's above.) - Tom Copeland, Oct 19 2012
With P = Pascal matrix, the sequence of matrices I, A007318, A038207, A027465, A038231, A038243, A038255, A027466 ... = P^0, P^1, P^2, ... are related by Copeland's formula below to the evolution at integral time steps n= 0, 1, 2, ... of an exponential distribution exp(-x*z) governed by the Fokker-Planck equation as given in the Dattoli et al. ref. below. - Tom Copeland, Oct 26 2012
The matrix elements of the inverse are T^(-1)(n,k) = (-1)^(n+k)*T(n,k). - R. J. Mathar, Mar 12 2013
Unsigned diagonals of A133156 are rows of this array. - Tom Copeland, Oct 11 2014
Omitting the first row, this is the production matrix for A039683, where an equivalent differential operator can be found. - Tom Copeland, Oct 11 2016
T(n,k) is the number of functions f:[n]->[3] with exactly k elements mapped to 3. Note that there are C(n,k) ways to choose the k elements mapped to 3, and there are 2^(n-k) ways to map the other (n-k) elements to {1,2}. Hence, by summing T(n,k) as k runs from 0 to n, we obtain 3^n = Sum_{k=0..n} T(n,k). - Dennis P. Walsh, Sep 26 2017
Since this array is the square of the Pascal lower triangular matrix, the row polynomials of this array are obtained as the umbral composition of the row polynomials P_n(x) of the Pascal matrix with themselves. E.g., P_3(P.(x)) = 1 P_3(x) + 3 P_2(x) + 3 P_1(x) + 1 = (x^3 + 3 x^2 + 3 x + 1) + 3 (x^2 + 2 x + 1) + 3 (x + 1) + 1 = x^3 + 6 x^2 + 12 x + 8. - Tom Copeland, Nov 12 2018
T(n,k) is the number of 2-compositions of n+1 with some zeros allowed that have k zeros; see the Hopkins & Ouvry reference. - Brian Hopkins, Aug 16 2020
Also the convolution triangle of A000079. - Peter Luschny, Oct 09 2022

Examples

			Triangle begins with T(0,0):
   1;
   2,  1;
   4,  4,  1;
   8, 12,  6,  1;
  16, 32, 24,  8,  1;
  32, 80, 80, 40, 10,  1;
  ... -  corrected by _Clark Kimberling_, Aug 05 2011
Seen as an array read by descending antidiagonals:
[0] 1, 2,  4,   8,    16,    32,    64,     128,     256, ...     [A000079]
[1] 1, 4,  12,  32,   80,    192,   448,    1024,    2304, ...    [A001787]
[2] 1, 6,  24,  80,   240,   672,   1792,   4608,    11520, ...   [A001788]
[3] 1, 8,  40,  160,  560,   1792,  5376,   15360,   42240, ...   [A001789]
[4] 1, 10, 60,  280,  1120,  4032,  13440,  42240,   126720, ...  [A003472]
[5] 1, 12, 84,  448,  2016,  8064,  29568,  101376,  329472, ...  [A054849]
[6] 1, 14, 112, 672,  3360,  14784, 59136,  219648,  768768, ...  [A002409]
[7] 1, 16, 144, 960,  5280,  25344, 109824, 439296,  1647360, ... [A054851]
[8] 1, 18, 180, 1320, 7920,  41184, 192192, 823680,  3294720, ... [A140325]
[9] 1, 20, 220, 1760, 11440, 64064, 320320, 1464320, 6223360, ... [A140354]
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 155.
  • H. S. M. Coxeter, Regular Polytopes, Dover Publications, New York (1973), p. 122.

Crossrefs

Programs

  • GAP
    Flat(List([0..15], n->List([0..n], k->Binomial(n, k)*2^(n-k)))); # Stefano Spezia, Nov 21 2018
  • Haskell
    a038207 n = a038207_list !! n
    a038207_list = concat $ iterate ([2,1] *) [1]
    instance Num a => Num [a] where
       fromInteger k = [fromInteger k]
       (p:ps) + (q:qs) = p + q : ps + qs
       ps + qs         = ps ++ qs
       (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs
        *                = []
    -- Reinhard Zumkeller, Apr 02 2011
    
  • Haskell
    a038207' n k = a038207_tabl !! n !! k
    a038207_row n = a038207_tabl !! n
    a038207_tabl = iterate f [1] where
       f row = zipWith (+) ([0] ++ row) (map (* 2) row ++ [0])
    -- Reinhard Zumkeller, Feb 27 2013
    
  • Magma
    /* As triangle */ [[(&+[Binomial(n,i)*Binomial(i,k): i in [k..n]]): k in [0..n]]: n in [0..15]]; // Vincenzo Librandi, Nov 16 2018
    
  • Maple
    for i from 0 to 12 do seq(binomial(i, j)*2^(i-j), j = 0 .. i) end do; # yields sequence in triangular form - Emeric Deutsch, Nov 04 2007
    # Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
    PMatrix(10, n -> 2^(n-1)); # Peter Luschny, Oct 09 2022
  • Mathematica
    Table[CoefficientList[Expand[(y + x + x^2)^n], y] /. x -> 1, {n, 0,10}] // TableForm (* Geoffrey Critzer, Nov 20 2011 *)
    Table[Binomial[n,k]2^(n-k),{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, May 22 2020 *)
  • PARI
    {T(n, k) = polcoeff((x+2)^n, k)}; /* Michael Somos, Apr 27 2000 */
    
  • Sage
    def A038207_triangle(dim):
        M = matrix(ZZ,dim,dim)
        for n in range(dim): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+2*M[n-1,k]
        return M
    A038207_triangle(9)  # Peter Luschny, Sep 20 2012
    

Formula

T(n, k) = Sum_{i=0..n} binomial(n,i)*binomial(i,k).
T(n, k) = (-1)^k*A065109(n,k).
G.f.: 1/(1-2*z-t*z). - Emeric Deutsch, Nov 04 2007
Rows of the triangle are generated by taking successive iterates of (A135387)^n * [1, 0, 0, 0, ...]. - Gary W. Adamson, Dec 09 2007
From the formalism of A133314, the e.g.f. for the row polynomials of A038207 is exp(x*t)*exp(2x). The e.g.f. for the row polynomials of the inverse matrix is exp(x*t)*exp(-2x). p iterates of the matrix give the matrix with e.g.f. exp(x*t)*exp(p*2x). The results generalize for 2 replaced by any number. - Tom Copeland, Aug 18 2008
Sum_{k=0..n} T(n,k)*x^k = (2+x)^n. - Philippe Deléham, Dec 15 2009
n-th row is obtained by taking pairwise sums of triangle A112857 terms starting from the right. - Gary W. Adamson, Feb 06 2012
T(n,n) = 1 and T(n,k) = T(n-1,k-1) + 2*T(n-1,k) for kJon Perry, Oct 11 2012
The e.g.f. for the n-th row is given by umbral composition of the normalized Laguerre polynomials A021009 as p(n,x) = L(n, -L(.,-x))/n! = 2^n L(n, -x/2)/n!. E.g., L(2,x) = 2 -4*x +x^2, so p(2,x)= (1/2)*L(2, -L(.,-x)) = (1/2)*(2*L(0,-x) + 4*L(1,-x) + L(2,-x)) = (1/2)*(2 + 4*(1+x) + (2+4*x+x^2)) = 4 + 4*x + x^2/2. - Tom Copeland, Oct 20 2012
From Tom Copeland, Oct 26 2012: (Start)
From the formalism of A132440 and A218272:
Let P and P^T be the Pascal matrix and its transpose and H= P^2= A038207.
Then with D the derivative operator,
exp(x*z/(1-2*z))/(1-2*z)= exp(2*z D_z z) e^(x*z)= exp(2*D_x (x D_x)) e^(z*x)
= (1 z z^2 z^3 ...) H (1 x x^2/2! x^3/3! ...)^T
= (1 x x^2/2! x^3/3! ...) H^T (1 z z^2 z^3 ...)^T
= Sum_{n>=0} z^n * 2^n Lag_n(-x/2)= exp[z*EF(.,x)], an o.g.f. for the f-vectors (rows) of A038207 where EF(n,x) is an e.g.f. for the n-th f-vector. (Lag_n(x) are the un-normalized Laguerre polynomials.)
Conversely,
exp(z*(2+x))= exp(2D_x) exp(x*z)= exp(2x) exp(x*z)
= (1 x x^2 x^3 ...) H^T (1 z z^2/2! z^3/3! ...)^T
= (1 z z^2/2! z^3/3! ...) H (1 x x^2 x^3 ...)^T
= exp(z*OF(.,x)), an e.g.f for the f-vectors of A038207 where
OF(n,x)= (2+x)^n is an o.g.f. for the n-th f-vector.
(End)
G.f.: R(0)/2, where R(k) = 1 + 1/(1 - (2*k+1+ (1+y))*x/((2*k+2+ (1+y))*x + 1/R(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Nov 09 2013
A038207 = exp[M*B(.,2)] where M = A238385-I and (B(.,x))^n = B(n,x) are the Bell polynomials (cf. A008277). B(n,2) = A001861(n). - Tom Copeland, Apr 17 2014
T = (A007318)^2 = A112857*|A167374| = |A118801|*|A167374| = |A118801*A167374| = |P*A167374*P^(-1)*A167374| = |P*NpdP*A167374|. Cf. A118801. - Tom Copeland, Nov 17 2016
E.g.f. for the n-th subdiagonal, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial 2^n*Sum_{k = 0..n} binomial(n,k)*x^k/k!. For example, the e.g.f. for the third subdiagonal is exp(x)*(8 + 24*x + 12*x^2 + 4*x^3/3) = 8 + 32*x + 80*x^2/2! + 160*x^3/3! + .... - Peter Bala, Mar 05 2017
T(3*k+2,k) = T(3*k+2,k+1), T(2*k+1,k) = 2*T(2*k+1,k+1). - Yuchun Ji, May 26 2020
From Robert A. Russell, Aug 05 2020: (Start)
G.f. for column k: x^k / (1-2*x)^(k+1).
E.g.f. for column k: exp(2*x) * x^k / k!. (End)
Also the array A(n, k) read by descending antidiagonals, where A(n, k) = (-1)^n*Sum_{j= 0..n+k} binomial(n + k, j)*hypergeom([-n, j+1], [1], 1). - Peter Luschny, Nov 09 2021

A035342 The convolution matrix of the double factorial of odd numbers (A001147).

Original entry on oeis.org

1, 3, 1, 15, 9, 1, 105, 87, 18, 1, 945, 975, 285, 30, 1, 10395, 12645, 4680, 705, 45, 1, 135135, 187425, 82845, 15960, 1470, 63, 1, 2027025, 3133935, 1595790, 370125, 43890, 2730, 84, 1, 34459425, 58437855, 33453945, 8998290
Offset: 1

Views

Author

Keywords

Comments

Previous name was: A triangle of numbers related to the triangle A035324; generalization of Stirling numbers of second kind A008277 and Lah numbers A008297.
If one replaces in the recurrence the '2' by '0', resp. '1', one obtains the Lah-number, resp. Stirling-number of 2nd kind, triangle A008297, resp. A008277.
The product of two lower triangular Jabotinsky matrices (see A039692 for the Knuth 1992 reference) is again such a Jabotinsky matrix: J(n,m) = Sum_{j=m..n} J1(n,j)*J2(j,m). The e.g.f.s of the first columns of these triangular matrices are composed in the reversed order: f(x)=f2(f1(x)). With f1(x)=-(log(1-2*x))/2 for J1(n,m)=|A039683(n,m)| and f2(x)=exp(x)-1 for J2(n,m)=A008277(n,m) one has therefore f2(f1(x))=1/sqrt(1-2*x) - 1 = f(x) for J(n,m)=a(n,m). This proves the matrix product given below. The m-th column of a Jabotinsky matrix J(n,m) has e.g.f. (f(x)^m)/m!, m>=1.
a(n,m) gives the number of forests with m rooted ordered trees with n non-root vertices labeled in an organic way. Organic labeling means that the vertex labels along the (unique) path from the root with label 0 to any leaf (non-root vertex of degree 1) is increasing. Proof: first for m=1 then for m>=2 using the recurrence relation for a(n,m) given below. - Wolfdieter Lang, Aug 07 2007
Also the Bell transform of A001147(n+1) (adding 1,0,0,... as column 0). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016

Examples

			Matrix begins:
    1;
    3,   1;
   15,   9,   1;
  105,  87,  18,   1;
  945, 975, 285,  30,   1;
  ...
Combinatoric meaning of a(3,2)=9: The nine increasing path sequences for the three rooted ordered trees with leaves labeled with 1,2,3 and the root labels 0 are: {(0,3),[(0,1),(0,2)]}; {(0,3),[(0,2),(0,1)]}; {(0,3),(0,1,2)}; {(0,1),[(0,3),(0,2)]}; [(0,1),[(0,2),(0,3)]]; [(0,2),[(0,1),(0,3)]]; {(0,2),[(0,3),(0,1)]}; {(0,1),(0,2,3)}; {(0,2),(0,1,3)}.
		

Crossrefs

The column sequences are A001147, A035101, A035119, ...
Row sums: A049118(n), n >= 1.

Programs

  • Haskell
    a035342 n k = a035342_tabl !! (n-1) !! (k-1)
    a035342_row n = a035342_tabl !! (n-1)
    a035342_tabl = map fst $ iterate (\(xs, i) -> (zipWith (+)
       ([0] ++ xs) $ zipWith (*) [i..] (xs ++ [0]), i + 2)) ([1], 3)
    -- Reinhard Zumkeller, Mar 12 2014
    
  • Maple
    T := (n,k) -> 2^(k-n)*hypergeom([k-n,k+1],[k-2*n+1],2)*GAMMA(2*n-k)/
    (GAMMA(k)*GAMMA(n-k+1)); for n from 1 to 9 do seq(simplify(T(n,k)),k=1..n) od; # Peter Luschny, Mar 31 2015
    T := (n, k) -> local j; 2^n*add((-1)^(k-j)*binomial(k, j)*pochhammer(j/2, n), j = 1..k)/k!: for n from 1 to 6 do seq(T(n, k), k=1..n) od;  # Peter Luschny, Mar 04 2024
  • Mathematica
    a[n_, k_] := 2^(n+k)*n!/(4^n*n*k!)*Sum[(j+k)*2^(j)*Binomial[j + k - 1, k-1]*Binomial[2*n - j - k - 1, n-1], {j, 0, n-k}]; Flatten[Table[a[n,k], {n, 1, 9}, {k, 1, n}] ] [[1 ;; 40]] (* Jean-François Alcover, Jun 01 2011, after Vladimir Kruchinin *)
  • Maxima
    a(n,k):=2^(n+k)*n!/(4^n*n*k!)*sum((j+k)*2^(j)*binomial(j+k-1,k-1)*binomial(2*n-j-k-1,n-1),j,0,n-k); /* Vladimir Kruchinin, Mar 30 2011 */
    
  • Sage
    # uses[bell_matrix from A264428]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    print(bell_matrix(lambda n: A001147(n+1), 9)) # Peter Luschny, Jan 19 2016

Formula

a(n, m) = Sum_{j=m..n} |A039683(n, j)|*S2(j, m) (matrix product), with S2(j, m) := A008277(j, m) (Stirling2 triangle). Priv. comm. to Wolfdieter Lang by E. Neuwirth, Feb 15 2001; see also the 2001 Neuwirth reference. See the comment on products of Jabotinsky matrices.
a(n, m) = n!*A035324(n, m)/(m!*2^(n-m)), n >= m >= 1; a(n+1, m)= (2*n+m)*a(n, m)+a(n, m-1); a(n, m) := 0, n
E.g.f. of m-th column: ((x*c(x/2)/sqrt(1-2*x))^m)/m!, where c(x) = g.f. for Catalan numbers A000108.
From Vladimir Kruchinin, Mar 30 2011: (Start)
G.f. (1/sqrt(1-2*x) - 1)^k = Sum_{n>=k} (k!/n!)*a(n,k)*x^n.
a(n,k) = 2^(n+k) * n! / (4^n*n*k!) * Sum_{j=0..n-k} (j+k) * 2^(j) * binomial(j+k-1,k-1) * binomial(2*n-j-k-1,n-1). (End)
From Peter Bala, Nov 25 2011: (Start)
E.g.f.: G(x,t) = exp(t*A(x)) = 1 + t*x + (3*t + t^2)*x^2/2! + (15*t + 9*t^2 + t^3)*x^3/3! + ..., where A(x) = -1 + 1/sqrt(1-2*x) satisfies the autonomous differential equation A'(x) = (1+A(x))^3.
The generating function G(x,t) satisfies the partial differential equation t*(dG/dt+G) = (1-2*x)*dG/dx, from which follows the recurrence given above.
The row polynomials are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+x)^3*d/dx. Cf. A008277 (D = (1+x)*d/dx), A105278 (D = (1+x)^2*d/dx), A035469 (D = (1+x)^4*d/dx) and A049029 (D = (1+x)^5*d/dx). (End)
The n-th row polynomial R(n,x) is given by the Dobinski-type formula R(n,x) = exp(-x)*Sum_{k>=1} k*(k+2)*...*(k+2*n-2)*x^k/k!. - Peter Bala, Jun 22 2014
T(n,k) = 2^(k-n)*hypergeom([k-n,k+1],[k-2*n+1],2)*Gamma(2*n-k)/(Gamma(k)*Gamma(n-k+1)). - Peter Luschny, Mar 31 2015
T(n,k) = 2^n*Sum_{j=1..k} ((-1)^(k-j)*binomial(k, j)*Pochhammer(j/2, n)) / k!. - Peter Luschny, Mar 04 2024

Extensions

Simpler name from Peter Luschny, Mar 31 2015

A001497 Triangle of coefficients of Bessel polynomials (exponents in decreasing order).

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 15, 15, 6, 1, 105, 105, 45, 10, 1, 945, 945, 420, 105, 15, 1, 10395, 10395, 4725, 1260, 210, 21, 1, 135135, 135135, 62370, 17325, 3150, 378, 28, 1, 2027025, 2027025, 945945, 270270, 51975, 6930, 630, 36, 1, 34459425, 34459425, 16216200, 4729725, 945945, 135135, 13860, 990, 45, 1
Offset: 0

Keywords

Comments

The (reverse) Bessel polynomials P(n,x):=Sum_{m=0..n} a(n,m)*x^m, the row polynomials, called Theta_n(x) in the Grosswald reference, solve x*(d^2/dx^2)P(n,x) - 2*(x+n)*(d/dx)P(n,x) + 2*n*P(n,x) = 0.
With the related Sheffer associated polynomials defined by Carlitz as
B(0,x) = 1
B(1,x) = x
B(2,x) = x + x^2
B(3,x) = 3 x + 3 x^2 + x^3
B(4,x) = 15 x + 15 x^2 + 6 x^3 + x^4
... (see Mathworld reference), then P(n,x) = 2^n * B(n,x/2) are the Sheffer polynomials described in A119274. - Tom Copeland, Feb 10 2008
Exponential Riordan array [1/sqrt(1-2x), 1-sqrt(1-2x)]. - Paul Barry, Jul 27 2010
From Vladimir Kruchinin, Mar 18 2011: (Start)
For B(n,k){...} the Bell polynomial of the second kind we have
B(n,k){f', f'', f''', ...} = T(n-1,k-1)*(1-2*x)^(k/2-n), where f(x) = 1-sqrt(1-2*x).
The expansions of the first few rows are:
1/sqrt(1-2*x);
1/(1-2*x)^(3/2), 1/(1-2*x);
3/(1-2*x)^(5/2), 3/(1-2*x)^2, 1/(1-2*x)^(3/2);
15/(1-2*x)^(7/2), 15/(1-2*x)^3, 6/(1-2*x)^(5/2), 1/(1-2*x)^2. (End)
Also the Bell transform of A001147 (whithout column 0 which is 1,0,0,...). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016
Antidiagonals of A099174 are rows of this entry. Dividing each diagonal by its first element generates A054142. - Tom Copeland, Oct 04 2016
The row polynomials p_n(x) of A107102 are (-1)^n B_n(1-x), where B_n(x) are the modified Carlitz-Bessel polynomials above, e.g., (-1)^2 B_2(1-x) = (1-x) + (1-x)^2 = 2 - 3 x + x^2 = p_2(x). - Tom Copeland, Oct 10 2016
a(n-1,m-1) counts rooted unordered binary forests with n labeled leaves and m roots. - David desJardins, Feb 23 2019
From Jianing Song, Nov 29 2021: (Start)
The polynomials P_n(x) = Sum_{k=0..n} T(n,k)*x^k satisfy: P_n(x) - (d/dx)P_n(x) = x*P_{n-1}(x) for n >= 1.
{P(n,x)} are related to the Fourier transform of 1/(1+x^2)^(n+1) and x/(1+x^2)^(n+2):
(i) For n >= 0, real number t, we have Integral_{x=-oo..oo} exp(-i*t*x)/(1+x^2)^(n+1) dx = Pi/(2^n*n!) * P_n(|t|) * exp(-|t|);
(ii) For n >= 0, real number t, we have Integral_{x=-oo..oo} x*exp(-i*t*x)/(1+x^2)^(n+2) dx = Pi/(2^(n+1)*(n+1)!) * ((-t)*P_n(-|t|)) * exp(-|t|). (End)
Suppose that f(x) is an n-times differentiable function defined on (a,b) for 0 <= a < b <= +oo, then for n >= 1, the n-th derivative of f(sqrt(x)) on (a^2,b^2) is Sum_{k=1..n} ((-1)^(n-k)*T(n-1,k-1)*f^(k)(sqrt(x))) / (2^n*x^(n-(k/2))), where f^(k) is the k-th derivative of f. - Jianing Song, Nov 30 2023

Examples

			Triangle begins
        1,
        1,       1,
        3,       3,      1,
       15,      15,      6,      1,
      105,     105,     45,     10,     1,
      945,     945,    420,    105,    15,    1,
    10395,   10395,   4725,   1260,   210,   21,   1,
   135135,  135135,  62370,  17325,  3150,  378,  28,  1,
  2027025, 2027025, 945945, 270270, 51975, 6930, 630, 36, 1
Production matrix begins
       1,      1,
       2,      2,      1,
       6,      6,      3,     1,
      24,     24,     12,     4,     1,
     120,    120,     60,    20,     5,    1,
     720,    720,    360,   120,    30,    6,   1,
    5040,   5040,   2520,   840,   210,   42,   7,  1,
   40320,  40320,  20160,  6720,  1680,  336,  56,  8, 1,
  362880, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1
This is the exponential Riordan array A094587, or [1/(1-x),x], beheaded.
- _Paul Barry_, Mar 18 2011
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

Crossrefs

Reflected version of A001498 which is considered the main entry.
Other versions of this same triangle are given in A144299, A111924 and A100861.
Row sums give A001515. a(n, 0)= A001147(n) (double factorials).
Cf. A104556 (matrix inverse). A039683, A122850.
Cf. A245066 (central terms).

Programs

  • Haskell
    a001497 n k = a001497_tabl !! n !! k
    a001497_row n = a001497_tabl !! n
    a001497_tabl = [1] : f [1] 1 where
       f xs z = ys : f ys (z + 2) where
         ys = zipWith (+) ([0] ++ xs) (zipWith (*) [z, z-1 ..] (xs ++ [0]))
    -- Reinhard Zumkeller, Jul 11 2014
    
  • Magma
    /* As triangle */ [[Factorial(2*n-k)/(Factorial(k)*Factorial(n-k)*2^(n-k)): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 12 2015
    
  • Maple
    f := proc(n) option remember; if n <=1 then (1+x)^n else expand((2*n-1)*x*f(n-1)+f(n-2)); fi; end;
    row := n -> seq(coeff(f(n), x, n - k), k = 0..n): seq(row(n), n = 0..9);
  • Mathematica
    m = 9; Flatten[ Table[(n + k)!/(2^k*k!*(n - k)!), {n, 0, m}, {k, n, 0, -1}]] (* Jean-François Alcover, Sep 20 2011 *)
    y[n_, x_] := Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n-1/2, 1/x]; t[n_, k_] := Coefficient[y[n, x], x, k]; Table[t[n, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 01 2013 *)
  • PARI
    T(k, n) = if(n>k||k<0||n<0,0,(2*k-n)!/(n!*(k-n)!*2^(k-n))) /* Ralf Stephan */
    
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, binomial(n, k)*(2*n-k)!/2^(n-k)/n!)}; /* Michael Somos, Oct 03 2006 */
    
  • Sage
    # uses[bell_matrix from A264428]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    bell_matrix(lambda n: A001147(n), 9) # Peter Luschny, Jan 19 2016

Formula

a(n, m) = (2*n-m)!/(m!*(n-m)!*2^(n-m)) if n >= m >= 0 else 0 (from Grosswald, p. 7).
a(n, m)= 0, n= m >= 0 (from Grosswald p. 23, (19)).
E.g.f. for m-th column: ((1-sqrt(1-2*x))^m)/(m!*sqrt(1-2*x)).
G.f.: 1/(1-xy-x/(1-xy-2x/(1-xy-3x/(1-xy-4x/(1-.... (continued fraction). - Paul Barry, Jan 29 2009
T(n,k) = if(k<=n, C(2n-k,2(n-k))*(2(n-k)-1)!!,0) = if(k<=n, C(2n-k,2(n-k))*A001147(n-k),0). - Paul Barry, Mar 18 2011
Row polynomials for n>=1 are given by 1/t*D^n(exp(x*t)) evaluated at x = 0, where D is the operator 1/(1-x)*d/dx. - Peter Bala, Nov 25 2011
The matrix product A039683*A008277 gives a signed version of this triangle. Dobinski-type formula for the row polynomials: R(n,x) = (-1)^n*exp(x)*Sum_{k = 0..inf} k*(k-2)*(k-4)*...*(k-2*(n-1))*(-x)^k/k!. Cf. A122850. - Peter Bala, Jun 23 2014

A004747 Triangle read by rows: the Bell transform of the triple factorial numbers A008544 without column 0.

Original entry on oeis.org

1, 2, 1, 10, 6, 1, 80, 52, 12, 1, 880, 600, 160, 20, 1, 12320, 8680, 2520, 380, 30, 1, 209440, 151200, 46480, 7840, 770, 42, 1, 4188800, 3082240, 987840, 179760, 20160, 1400, 56, 1, 96342400, 71998080, 23826880, 4583040, 562800, 45360, 2352, 72, 1
Offset: 1

Keywords

Comments

Previous name was: Triangle of numbers related to triangle A048966; generalization of Stirling numbers of second kind A008277, Bessel triangle A001497.
T(n,m) = S2p(-2; n,m), a member of a sequence of triangles including S2p(-1; n,m) = A001497(n-1,m-1) (Bessel triangle) and ((-1)^(n-m))*S2p(1; n,m) = A008277(n, m) (Stirling 2nd kind). T(n,1)= A008544(n-1).
T(n,m), n>=m>=1, enumerates unordered n-vertex m-forests composed of m plane (aka ordered) increasing (rooted) trees where vertices of out-degree r>=0 come in r+1 different types (like an (r+1)-ary vertex). Proof from the e.g.f. of the first column Y(z) = 1 - (1-3*x)^(1/3) and the F. Bergeron et al. eq. (8) Y'(z)= phi(Y(z)), Y(0) = 0, with out-degree o.g.f. phi(w)=1/(1-w)^2. - Wolfdieter Lang, Oct 12 2007
Also the Bell transform of the triple factorial numbers A008544 which adds a first column (1,0,0 ...) on the left side of the triangle. For the definition of the Bell transform see A264428. See A051141 for the triple factorial numbers A032031 and A203412 for the triple factorial numbers A007559 as well as A039683 and A132062 for the case of double factorial numbers. - Peter Luschny, Dec 21 2015

Examples

			Triangle begins:
       1;
       2,      1;
      10,      6,     1;
      80,     52,    12,    1;
     880,    600,   160,   20,   1;
   12320,   8680,  2520,  380,  30,  1;
  209440, 151200, 46480, 7840, 770, 42, 1;
Tree combinatorics for T(3,2)=6: Consider first the unordered forest of m=2 plane trees with n=3 vertices, namely one vertex with out-degree r=0 (root) and two different trees with two vertices (one root with out-degree r=1 and a leaf with r=0). The 6 increasing labelings come then from the forest with rooted (x) trees x, o-x (1,(3,2)), (2,(3,1)) and (3,(2,1)) and similarly from the second forest x, x-o (1,(2,3)), (2,(1,3)) and (3,(1,2)).
		

Crossrefs

Cf. A015735 (row sums).
Triangles with the recurrence T(n,k) = (m*(n-1)-k)*T(n-1,k) + T(n-1,k-1): A010054 (m=1), A001497 (m=2), this sequence (m=3), A000369 (m=4), A011801 (m=5), A013988 (m=6).

Programs

  • Magma
    function T(n,k) // T = A004747
      if k eq 0 then return 0;
      elif k eq n then return 1;
      else return (3*(n-1)-k)*T(n-1,k) + T(n-1,k-1);
      end if;
    end function;
    [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2023
  • Maple
    T := (n, m) -> 3^n/m!*(1/3*m*GAMMA(n-1/3)*hypergeom([1-1/3*m, 2/3-1/3*m, 1/3-1/3*m], [2/3, 4/3-n], 1)/GAMMA(2/3)-1/6*m*(m-1)*GAMMA(n-2/3)*hypergeom( [1-1/3*m, 2/3-1/3*m, 4/3-1/3*m], [4/3, 5/3-n], 1)/Pi*3^(1/2)*GAMMA(2/3)):
    for n from 1 to 6 do seq(simplify(T(n,k)),k=1..n) od;
    # Karol A. Penson, Feb 06 2004
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> mul(3*k+2, k=(0..n-1)), 9); # Peter Luschny, Jan 29 2016
  • Mathematica
    (* First program *)
    T[1,1]= 1; T[, 0]= 0; T[0, ]= 0; T[n_, m_]:= (3*(n-1)-m)*T[n-1, m]+T[n-1, m-1];
    Flatten[Table[T[n, m], {n,12}, {m,n}] ][[1 ;; 45]] (* Jean-François Alcover, Jun 16 2011, after recurrence *)
    (* Second program *)
    f[n_, m_]:= m/n Sum[Binomial[k, n-m-k] 3^k (-1)^(n-m-k) Binomial[n+k-1, n-1], {k, 0, n-m}]; Table[n! f[n, m]/(m! 3^(n-m)), {n,12}, {m,n}]//Flatten (* Michael De Vlieger, Dec 23 2015 *)
    (* Third program *)
    rows = 12;
    T[n_, m_]:= BellY[n, m, Table[Product[3k+2, {k, 0, j-1}], {j, 0, rows}]];
    Table[T[n, m], {n,rows}, {m,n}]//Flatten (* Jean-François Alcover, Jun 22 2018 *)
  • Sage
    # uses [bell_transform from A264428]
    triplefactorial = lambda n: prod(3*k+2 for k in (0..n-1))
    def A004747_row(n):
        trifact = [triplefactorial(k) for k in (0..n)]
        return bell_transform(n, trifact)
    [A004747_row(n) for n in (0..10)] # Peter Luschny, Dec 21 2015
    

Formula

T(n, m) = n!*A048966(n, m)/(m!*3^(n-m));
T(n+1, m) = (3*n-m)*T(n, m)+ T(n, m-1), for n >= m >= 1, with T(n, m) = 0, for n
E.g.f. of m-th column: ( 1 - (1-3*x)^(1/3) )^m/m!.
Sum_{k=1..n} T(n, k) = A015735(n).
For a formula expressed as special values of hypergeometric functions 3F2 see the Maple program below. - Karol A. Penson, Feb 06 2004
T(n,1) = A008544(n-1). - Peter Luschny, Dec 23 2015

Extensions

New name from Peter Luschny, Dec 21 2015

A051141 Triangle read by rows: a(n, m) = S1(n, m)*3^(n-m), where S1 are the signed Stirling numbers of first kind A008275 (n >= 1, 1 <= m <= n).

Original entry on oeis.org

1, -3, 1, 18, -9, 1, -162, 99, -18, 1, 1944, -1350, 315, -30, 1, -29160, 22194, -6075, 765, -45, 1, 524880, -428652, 131544, -19845, 1575, -63, 1, -11022480, 9526572, -3191076, 548289, -52920, 2898, -84, 1, 264539520, -239660208
Offset: 1

Keywords

Comments

Previous name was: Generalized Stirling number triangle of first kind.
a(n,m) = R_n^m(a=0,b=3) in the notation of the given reference.
a(n,m) is a Jabotinsky matrix, i.e., the monic row polynomials E(n,x) := Sum_{m=1..n} a(n,m)*x^m = Product_{j=0..n-1} (x - 3*j), n >= 1 and E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
This is the signed Stirling1 triangle with diagonals d>=0 (main diagonal d=0) scaled with 3^d.
Exponential Riordan array [1/(1 + 3*x), log(1 + 3*x)/3]. The unsigned triangle is [1/(1 - 3*x), log(1/(1 - 3*x)^(1/3))]. - Paul Barry, Apr 29 2009
Also the Bell transform of the triple factorial numbers A032031 which adds a first column (1, 0, 0 ...) on the left side of the triangle and computes the unsigned values. For the definition of the Bell transform, see A264428. See A004747 for the triple factorial numbers A008544 and A203412 for the triple factorial numbers A007559 as well as A039683 and A132062 for the case of double factorial numbers. - Peter Luschny, Dec 21 2015

Examples

			Triangle starts:
       1;
      -3,       1;
      18,      -9,      1;
    -162,      99,    -18,      1;
    1944,   -1350,    315,    -30,    1;
  -29160,   22194,  -6075,    765,  -45,   1;
  524880, -428652, 131544, -19845, 1575, -63, 1;
---
Row polynomial E(3,x) = 18*x-9*x^2+x^3.
From _Paul Barry_, Apr 29 2009: (Start)
The unsigned array [1/(1 - 3*x), log(1/(1 - 3*x)^(1/3))] has production matrix
    3,    1;
    9,    6,    1;
   27,   27,    9,   1;
   81,  108,   54,  12,   1;
  243,  405,  270,  90,  15,  1;
  729, 1458, 1215, 540, 135, 18, 1;
  ...
which is A007318^{3} beheaded (by viewing A007318 as a lower triangular matrix). See the comment above. (End)
		

Crossrefs

First (m=1) column sequence is: A032031(n-1).
Row sums (signed triangle): A008544(n-1)*(-1)^(n-1).
Row sums (unsigned triangle): A007559(n).
Cf. A008275 (Stirling1 triangle, b=1), A039683 (b=2), A051142 (b=4).

Programs

Formula

a(n, m) = a(n-1, m-1) - 3*(n-1)*a(n-1, m) for n >= m >= 1; a(n, m) = 0 for n < m; a(n, 0) = 0 for n >= 1; a(0, 0) = 1.
E.g.f. for the m-th column of the signed triangle: (log(1 + 3*x)/3)^m/m!.
|a(n,1)| = A032031(n-1). - Peter Luschny, Dec 23 2015

Extensions

Name clarified using a formula of the author by Peter Luschny, Dec 23 2015

A051142 Generalized Stirling number triangle of first kind.

Original entry on oeis.org

1, -4, 1, 32, -12, 1, -384, 176, -24, 1, 6144, -3200, 560, -40, 1, -122880, 70144, -14400, 1360, -60, 1, 2949120, -1806336, 415744, -47040, 2800, -84, 1, -82575360, 53526528, -13447168, 1732864, -125440, 5152, -112, 1, 2642411520, -1795424256, 483835904
Offset: 1

Keywords

Comments

a(n,m) = R_n^m(a=0, b=4) in the notation of the given 1961 and 1962 references.
a(n,m) is a Jabotinsky matrix, i.e., the monic row polynomials E(n,x) := Sum_{m=1..n} a(n,m)*x^m = Product_{j=0..n-1} (x - 4*j), n >= 1, and E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
This is the signed Stirling1 triangle with diagonal d >= 0 (main diagonal d = 0) scaled with 4^d.
Also the Bell transform of the quadruple factorial numbers Product_{k=0..n-1} (4*k+4) (A047053) giving unsigned values and adding 1, 0, 0, 0, ... as column 0. For the definition of the Bell transform, see A264428 and for cross-references A265606. - Peter Luschny, Dec 31 2015

Examples

			Triangle a(n,m) (with rows n >= 1 and columns m = 1..n) begins:
        1;
       -4,     1;
       32,   -12,      1;
     -384,   176,    -24,    1;
     6144, -3200,    560,  -40,   1,
  -122880, 70144, -14400, 1360, -60, 1;
  ...
3rd row o.g.f.: E(3,x) = 32*x - 12*x^2 + x^3.
		

Crossrefs

First (m=1) column sequence is: A047053(n-1).
Row sums (signed triangle): A008545(n-1)*(-1)^(n-1).
Row sums (unsigned triangle): A007696(n).
Cf. A008275 (Stirling1 triangle, b=1), A039683 (b=2), A051141 (b=3).

Programs

  • Mathematica
    Table[StirlingS1[n, m] 4^(n - m), {n, 9}, {m, n}] // Flatten (* Michael De Vlieger, Dec 31 2015 *)
  • Sage
    # uses[bell_transform from A264428]
    # Unsigned values and an additional first column (1,0,0,0, ...).
    def A051142_row(n):
        multifact_4_4 = lambda n: prod(4*k + 4 for k in (0..n-1))
        mfact = [multifact_4_4(k) for k in (0..n)]
        return bell_transform(n, mfact)
    [A051142_row(n) for n in (0..9)] # Peter Luschny, Dec 31 2015

Formula

a(n, m) = a(n-1, m-1) - 4*(n-1)*a(n-1, m) for n >= m >= 1; a(n, m) := 0 for n < m; a(n, 0) := 0 for n >= 1; a(0, 0) = 1.
E.g.f. for the m-th column of the signed triangle: (log(1 + 4*x)/4)^m/m!.
a(n, m) = S1(n, m)*4^(n-m), with S1(n, m) := A008275(n, m) (signed Stirling1 triangle).

A132062 Sheffer triangle (1,1-sqrt(1-2*x)). Extended Bessel triangle A001497.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 3, 1, 0, 15, 15, 6, 1, 0, 105, 105, 45, 10, 1, 0, 945, 945, 420, 105, 15, 1, 0, 10395, 10395, 4725, 1260, 210, 21, 1, 0, 135135, 135135, 62370, 17325, 3150, 378, 28, 1, 0, 2027025, 2027025, 945945, 270270, 51975, 6930, 630, 36, 1, 0
Offset: 0

Author

Wolfdieter Lang Sep 14 2007

Keywords

Comments

This is a Jabotinsky type exponential convolution triangle related to A001147 (double factorials). For Jabotinsky type triangles See the D. E. Knuth reference given under A039692.
The subtriangle (n>=m>=1) is A001497(n,m) (Bessel).
For the combinatorial interpretation in terms of unordered forests of increasing plane trees see the W. Lang comment and example under A001497.
This is a special type of Sheffer triangle. See the S. Roman reference given under A048854 (the notation here differs).
This triangle (or the A001497 subtriangle) appears as generalized Stirling numbers of the second kind, S2p(-1,n,m):=S2(-k;m,m)*(-1)^(n-m) for k=1, eqs. (27)-(29) of the W. Lang reference.
Also the Bell transform of the double factorial of odd numbers A001147. For the Bell transform of the double factorial of even numbers A000165 see A039683. For the definition of the Bell transform see A264428. - Peter Luschny, Dec 20 2015

Examples

			[1]
[0,      1]
[0,      1,      1]
[0,      3,      3,     1]
[0,     15,     15,     6,     1]
[0,    105,    105,    45,    10,    1]
[0,    945,    945,   420,   105,   15,   1]
[0,  10395,  10395,  4725,  1260,  210,  21,  1]
[0, 135135, 135135, 62370, 17325, 3150, 378, 28, 1]
		

References

  • Toufik Mansour, Matthias Schork and Mark Shattuck, On the Stirling numbers associated with the meromorphic Weyl algebra, Applied Mathematics Letters, Volume 25, Issue 11, November 2012, Pages 1767-1771. - From N. J. A. Sloane, Sep 15 2012
  • Steven Roman, The Umbral Calculus, Pure and Applied Mathematics, 111, Academic Press, 1984. (p. 78) [Emanuele Munarini, Oct 10 2017]

Crossrefs

Columns m=1: A001147.
Row sums give [1, A001515]. Alternating row sums give [1, -A000806].
Cf. A122850. - R. J. Mathar, Mar 20 2009

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> doublefactorial(2*n-1), 9); # Peter Luschny, Jan 27 2016
    # Alternative:
    egf := exp(y*(1 - sqrt(1 - 2*x))): serx := series(egf, x, 12):
    coefx := n -> n!*coeff(serx, x, n): row := n -> seq(coeff(coefx(n), y, k), k = 0..n): for n from 0 to 8 do row(n) od;  # Peter Luschny, Apr 25 2024
  • Mathematica
    Table[If[k <= n, Binomial[2n-2k,n-k] Binomial[2n-k-1,k-1] (n-k)!/2^(n-k), 0], {n, 0, 6}, {k, 0, n}] // Flatten (* Emanuele Munarini, Oct 10 2017 *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 10;
    M = BellMatrix[(2#-1)!!&, rows];
    Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
  • Sage
    # uses[bell_transform from A264428]
    def A132062_row(n):
        a = sloane.A001147
        dblfact = a.list(n)
        return bell_transform(n, dblfact)
    [A132062_row(n) for n in (0..9)] # Peter Luschny, Dec 20 2015

Formula

a(n,m)=0 if n
E.g.f. m-th column ((x*f2p(1;x))^m)/m!, m>=0. with f2p(1;x):=1-sqrt(1-2*x)= x*c(x/2) with the o.g.f.of A000108 (Catalan).
From Emanuele Munarini, Oct 10 2017: (Start)
a(n,k) = binomial(2*n-2*k,n-k)*binomial(2*n-k-1,k-1)*(n-k)!/2^(n-k).
The row polynomials p_n(x) (studied by Carlitz) satisfy the recurrence: p_{n+2}(x) - (2*n+1)*p_{n+1}(x) - x^2*p_n(x) = 0. (End)
T(n, k) = n! [y^k] [x^n] exp(y*(1 - sqrt(1 - 2*x))). - Peter Luschny, Apr 25 2024
Showing 1-10 of 20 results. Next