A155718 Symmetrical form of A039683 using polynomials: p(x,n)=Product[x - (2*i), {i, 0, Floor[n/2]}]/x; t(n,m)=coefficients(p(x,n)+x^n*p(1/x,n)); t(n,m)=A039683(n,m)+A039683(n,n-m).
2, -1, -1, 9, -12, 9, -47, 32, 32, -47, 385, -420, 280, -420, 385, -3839, 4354, -1460, -1460, 4354, -3839, 46081, -56490, 26684, -11760, 26684, -56490, 46081, -645119, 836296, -418936, 92624, 92624, -418936, 836296, -645119, 10321921, -14026824
Offset: 0
Examples
{2}, {-1, -1}, {9, -12, 9}, {-47, 32, 32, -47}, {385, -420, 280, -420, 385}, {-3839, 4354, -1460, -1460, 4354, -3839}, {46081, -56490, 26684, -11760, 26684, -56490, 46081}, {-645119, 836296, -418936, 92624, 92624, -418936, 836296, -645119}, {10321921, -14026824, 7562120, -2189376, 718368, -2189376, 7562120, -14026824, 10321921}, {-185794559, 262803366, -150102120, 46239920, -7606032, -7606032, 46239920, -150102120, 262803366, -185794559}, {3715891201, -5441863790, 3264920736, -1076561200, 221207888, -57731520, 221207888, -1076561200, 3264920736, -5441863790, 3715891201}
Programs
-
Mathematica
Clear[p, x, n, b, a, b0]; p[x_, n_] := Product[x - (2*i), {i, 0, Floor[n/2]}]/x; Table[Expand[ CoefficientList[ExpandAll[p[x, n]], x] + Reverse[CoefficientList[ExpandAll[p[x, n]], x]]], {n, 0, 20, 2}]; Flatten[%]
Comments