A051578 a(n) = (2*n+4)!!/4!!, related to A000165 (even double factorials).
1, 6, 48, 480, 5760, 80640, 1290240, 23224320, 464486400, 10218700800, 245248819200, 6376469299200, 178541140377600, 5356234211328000, 171399494762496000, 5827582821924864000, 209792981589295104000, 7972133300393213952000, 318885332015728558080000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..400
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 521.
- A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
Crossrefs
Programs
-
GAP
List([0..20], n-> 2^(n-1)*Factorial(n+2) ); # G. C. Greubel, Nov 11 2019
-
Magma
[2^(n-1)*Factorial(n+2): n in [0..20]]; // G. C. Greubel, Nov 11 2019
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, 2*(n+2)*a(n-1)) end: seq(a(n), n=0..20); # Alois P. Heinz, Apr 29 2019 seq(2^(n-1)*(n+2)!, n=0..20); # G. C. Greubel, Nov 11 2019
-
Mathematica
Table[2^(n-1)(n+2)!, {n,0,20}] (* Jean-François Alcover, Oct 05 2019 *) Table[(2n+4)!!/8,{n,0,20}] (* Harvey P. Dale, Apr 06 2023 *)
-
PARI
vector(21, n, 2^(n-2)*(n+1)! ) \\ G. C. Greubel, Nov 11 2019
-
PARI
apply( {A051578(n)=(n+2)!<<(n-1)}, [0..18]) \\ M. F. Hasler, Nov 10 2024
-
Sage
[2^(n-1)*factorial(n+2) for n in (0..20)] # G. C. Greubel, Nov 11 2019
Formula
a(n) = (2*n+4)!!/4!!.
E.g.f.: 1/(1-2*x)^3.
a(n) ~ 2^(-1/2)*Pi^(1/2)*n^(5/2)*2^n*e^-n*n^n*{1 + 37/12*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 23 2001
a(n) = (n+2)!*2^(n-1). - Zerinvary Lajos, Sep 23 2006. [corrected by Gary Detlefs, Apr 29 2019]
a(n) = 2^n*A001710(n+2). - R. J. Mathar, Feb 22 2008
From Peter Bala, May 26 2017: (Start)
a(n+1) = (2*n + 6)*a(n) with a(0) = 1.
O.g.f. satisfies the Riccati differential equation 2*x^2*A(x)' = (1 - 6*x)*A(x) - 1 with A(0) = 1.
G.f. as an S-fraction: A(x) = 1/(1 - 6*x/(1 - 2*x/(1 - 8*x/(1 - 4*x/(1 - 10*x/(1 - 6*x/(1 - ... - (2*n + 4)*x/(1 - 2*n*x/(1 - ...))))))))) (by Stokes 1982).
Reciprocal as an S-fraction: 1/A(x) = 1/(1 + 6*x/(1 - 8*x/(1 - 2*x/(1 - 10*x/(1 - 4*x/(1 - 12*x/(1 - 6*x/(1 - ... - (2*n + 6)*x/(1 - 2*n*x/(1 - ...)))))))))). (End)
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 8*sqrt(e) - 12.
Sum_{n>=0} (-1)^n/a(n) = 8/sqrt(e) - 4. (End)
a(n) = A052587(n+2) for n > 0. - M. F. Hasler, Nov 10 2024
Comments