A045991
a(n) = n^3 - n^2.
Original entry on oeis.org
0, 0, 4, 18, 48, 100, 180, 294, 448, 648, 900, 1210, 1584, 2028, 2548, 3150, 3840, 4624, 5508, 6498, 7600, 8820, 10164, 11638, 13248, 15000, 16900, 18954, 21168, 23548, 26100, 28830, 31744, 34848, 38148, 41650, 45360, 49284, 53428, 57798, 62400, 67240, 72324
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- R. J. Mathar, On the Diophantine equation (X-Y)^m-XY=0.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- J.S. Seneschal, Oblong cuboid illustration.
- Eric Weisstein's World of Mathematics, Edge Count.
- Eric Weisstein's World of Mathematics, Rook Graph.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
[n^3-n^2: n in [0..40]]; // Vincenzo Librandi, May 02 2011
-
A045991:=n->n^3 - n^2: seq(A045991(n), n=0..50); # Wesley Ivan Hurt, Mar 30 2014
-
Table[n^3 - n^2, {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Dec 22 2008 *)
Table[4 Binomial[n, 2] + 6 Binomial[n, 3], {n, 0, 50}] (* Robert G. Wilson v, Mar 25 2012 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 4, 18, 48}, 20] (* Eric W. Weisstein, Jun 20 2017 *)
-
a(n)=n^2*(n-1) \\ Charles R Greathouse IV, Jul 17 2011
-
[n^2*(n-1) for n in range(0, 40)] # Zerinvary Lajos, Dec 03 2009
A011379
a(n) = n^2*(n+1).
Original entry on oeis.org
0, 2, 12, 36, 80, 150, 252, 392, 576, 810, 1100, 1452, 1872, 2366, 2940, 3600, 4352, 5202, 6156, 7220, 8400, 9702, 11132, 12696, 14400, 16250, 18252, 20412, 22736, 25230, 27900, 30752, 33792, 37026, 40460, 44100, 47952, 52022, 56316, 60840
Offset: 0
- L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, pp. 50, 64.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Bruno Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian).
- Allan Bickle and Zhongyuan Che, Irregularities of Maximal k-degenerate Graphs, Discrete Applied Math. 331 (2023) 70-87.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- Ivan Gutman and Kinkar Ch. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50, 2004, 83-92.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- J.S. Seneschal, Oblong cuboid illustration
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Cf.
A000217,
A000290,
A000292,
A000330,
A000578,
A002378,
A002411,
A002412,
A002413,
A005449,
A013661,
A022549,
A027480,
A045991,
A049450,
A120070,
A126890,
A195437,
A245334.
-
List([0..40], n-> n^2*(n+1) ); # G. C. Greubel, Aug 10 2019
-
a011379 n = a000290 n + a000578 n -- Reinhard Zumkeller, Apr 28 2013
-
[n^2+n^3: n in [0..40]]; // Vincenzo Librandi, May 02 2011
-
A011379:=n->n^2*(n+1); seq(A011379(n), n=0..40); # Wesley Ivan Hurt, Feb 25 2014
-
Table[n^3+n^2, {n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Jan 03 2009, modified by G. C. Greubel, Aug 10 2019 *)
LinearRecurrence[{4,-6,4,-1},{0,2,12,36},40] (* Harvey P. Dale, Sep 13 2018 *)
-
a(n)=n^3+n^2 \\ Charles R Greathouse IV, Apr 06 2016
-
[n^2*(n+1) for n in (0..40)] # G. C. Greubel, Aug 10 2019
A028724
a(n) = (1/2)*floor(n/2)*floor((n-1)/2)*floor((n-2)/2).
Original entry on oeis.org
0, 0, 0, 0, 1, 2, 6, 9, 18, 24, 40, 50, 75, 90, 126, 147, 196, 224, 288, 324, 405, 450, 550, 605, 726, 792, 936, 1014, 1183, 1274, 1470, 1575, 1800, 1920, 2176, 2312, 2601, 2754, 3078, 3249, 3610, 3800, 4200, 4410, 4851, 5082, 5566, 5819, 6348, 6624, 7200
Offset: 0
a(7) = 9 since the 9 tuples [x, y, z, w] in {[4, 3, 2, 2] [4, 3, 3, 2] [4, 3, 3, 3] [4, 3, 4, 2] [4, 3, 4, 3] [5, 2, 2, 2] [5, 2, 3, 2] [5, 2, 4, 2] [5, 2, 5, 2]} are all the solutions of 7 = x + y, x >= max(y, z), min(y, z) >= w >= 2.
- P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 185, Article 433.
- Iain Fox, Table of n, a(n) for n = 0..10000
- Paul Barry, On sequences with {-1, 0, 1} Hankel transforms, arXiv preprint arXiv:1205.2565 [math.CO], 2012. - From _N. J. A. Sloane_, Oct 18 2012
- J.S. Seneschal, Oblong cuboid illustration
- Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-3,3,1,-1).
-
[((-1)^n*(3 -3*n +n^2) -(3 -11*n +9*n^2 -2*n^3))/32: n in [0..60]]; // G. C. Greubel, Apr 08 2022
-
A028724:=n->(1/2)*floor(n/2)*floor((n-1)/2)*floor((n-2)/2);
seq(A028724(k), k=0..100); # Wesley Ivan Hurt, Nov 01 2013
-
Table[(1/2)*Floor[n/2]*Floor[(n-1)/2]*Floor[(n-2)/2], {n,0,100}] (* Wesley Ivan Hurt, Nov 01 2013 *)
Table[(11n-3-9n^2+2n^3+(-1)^n(3-3n+n^2))/32,{n,0,60}] (* Benedict W. J. Irwin, Sep 27 2016 *)
CoefficientList[Series[x^4 (1 + x + x^2)/(x - 1)^4/(x + 1)^3, {x, 0, 60}], x] (* Michael De Vlieger, Sep 27 2016 *)
-
{a(n) = (n\2) * ((n-1)\2) * (n\2-1) / 2} /* Michael Somos, Jan 27 2008 */
-
{a(n) = if( n<0, n=-1-n; -1, n-=4; 1) * polcoeff( (1 - x^3) / (1 - x)^2 / (1 - x^2)^3 + x*O(x^n), n)} /* Michael Somos, Jan 27 2008 */
-
first(n) = Vec(x^4*(1+x+x^2)/(x-1)^4/(x+1)^3 + O(x^(n)), -n) \\ Iain Fox, Nov 18 2017
-
[(1/2)*(n//2)*((n-1)//2)*((n-2)//2) for n in (0..60)] # G. C. Greubel, Apr 08 2022
A052290
Prime values of n!*2^n+n+1 = A000165(n)+n+1.
Original entry on oeis.org
2, 11, 389, 1961990553613, 1678343852714360832019, 25563186766285862273530264901662157745369907200000037
Offset: 1
If n=4, 2^4*4!+4+1 = 389 is prime, so 389 is a term.
-
Select[Table[n! 2^n+n+1,{n,0,1000}],PrimeQ] (* Harvey P. Dale, Aug 06 2012 *)
Showing 1-4 of 4 results.
Comments