Original entry on oeis.org
1, 8, 27, 12, 3, 64, 36, 14, 125, 80, 39, 216, 150, 84, 343, 252, 155, 512, 392, 258, 729, 576, 399, 1000, 810, 584, 1331, 1100, 819, 1728, 1452, 1110, 2197, 1872, 1463, 2744, 2366, 1884, 3375, 2940, 2379, 4096, 3600, 2954, 4913, 4352, 3615, 5832, 5202, 4368
Offset: 1
A002411
Pentagonal pyramidal numbers: a(n) = n^2*(n+1)/2.
Original entry on oeis.org
0, 1, 6, 18, 40, 75, 126, 196, 288, 405, 550, 726, 936, 1183, 1470, 1800, 2176, 2601, 3078, 3610, 4200, 4851, 5566, 6348, 7200, 8125, 9126, 10206, 11368, 12615, 13950, 15376, 16896, 18513, 20230, 22050, 23976, 26011, 28158, 30420, 32800, 35301, 37926, 40678
Offset: 0
a(3)=18 because 4 identical balls can be put into m=2 of n=4 distinguishable boxes in binomial(4,2)*(2!/(1!*1!) + 2!/2!) = 6*(2+1) = 18 ways. The m=2 part partitions of 4, namely (1,3) and (2,2), specify the filling of each of the 6 possible two-box choices. - _Wolfdieter Lang_, Nov 13 2007
- V. I. Arnold (ed.), Arnold's Problems, Springer, 2004, comments on Problem 1990-11 (p. 75), pp. 503-510. Numbers N_1.
- Christian Barrientos, Graceful labelings of cyclic snakes, Ars Combin., Vol. 60 (2001), pp. 85-96.
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 166, Table 10.4/I/5).
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see Vol. 2, p. 2.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Somaya Barati, Beáta Bényi, Abbas Jafarzadeh and Daniel Yaqubi, Mixed restricted Stirling numbers, arXiv:1812.02955 [math.CO], 2018.
- Phyllis Chinn and Silvia Heubach, Integer Sequences Related to Compositions without 2's, J. Integer Seq., Vol. 6 (2003), Article 03.2.3.
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 17.
- Lancelot Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Max Parrish and Co, London, 1950, p. 36.
- Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, Vol 19 (2016), Article 16.7.3.
- C. Krishnamachaki, The operator (xD)^n, J. Indian Math. Soc., Vol. 15 (1923), pp. 3-4. [Annotated scanned copy]
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber., Vol. 30 (1897), pp. 1917-1926.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber., Vol. 30 (1897), pp. 1917-1926. (Annotated scanned copy)
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Eric Weisstein's World of Mathematics, Pentagonal Pyramidal Number.
- Eric Weisstein's World of Mathematics, Wiener Index.
- Index entries for two-way infinite sequences.
- Index to sequences related to polygonal numbers.
- Index to sequences related to pyramidal numbers.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
a(n) =
A093560(n+2, 3), (3, 1)-Pascal column.
Cf. similar sequences listed in
A237616.
-
List([0..45], n->n^2*(n+1)/2); # Muniru A Asiru, Feb 19 2018
-
a002411 n = n * a000217 n -- Reinhard Zumkeller, Jul 07 2012
-
[n^2*(n+1)/2: n in [0..40]]; // Wesley Ivan Hurt, May 25 2014
-
seq(n^2*(n+1)/2, n=0..40);
-
Table[n^2 (n + 1)/2, {n, 0, 40}]
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 6, 18}, 50] (* Harvey P. Dale, Oct 20 2011 *)
Nest[Accumulate, Range[1, 140, 3], 2] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2012 *)
CoefficientList[Series[x (1 + 2 x) / (1 - x)^4, {x, 0, 45}], x] (* Vincenzo Librandi, Jan 08 2016 *)
-
a(n)=n^2*(n+1)/2
-
concat(0, Vec(x*(1+2*x)/(1-x)^4 + O(x^100))) \\ Altug Alkan, Jan 07 2016
A045991
a(n) = n^3 - n^2.
Original entry on oeis.org
0, 0, 4, 18, 48, 100, 180, 294, 448, 648, 900, 1210, 1584, 2028, 2548, 3150, 3840, 4624, 5508, 6498, 7600, 8820, 10164, 11638, 13248, 15000, 16900, 18954, 21168, 23548, 26100, 28830, 31744, 34848, 38148, 41650, 45360, 49284, 53428, 57798, 62400, 67240, 72324
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- R. J. Mathar, On the Diophantine equation (X-Y)^m-XY=0.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- J.S. Seneschal, Oblong cuboid illustration.
- Eric Weisstein's World of Mathematics, Edge Count.
- Eric Weisstein's World of Mathematics, Rook Graph.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
[n^3-n^2: n in [0..40]]; // Vincenzo Librandi, May 02 2011
-
A045991:=n->n^3 - n^2: seq(A045991(n), n=0..50); # Wesley Ivan Hurt, Mar 30 2014
-
Table[n^3 - n^2, {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Dec 22 2008 *)
Table[4 Binomial[n, 2] + 6 Binomial[n, 3], {n, 0, 50}] (* Robert G. Wilson v, Mar 25 2012 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 4, 18, 48}, 20] (* Eric W. Weisstein, Jun 20 2017 *)
-
a(n)=n^2*(n-1) \\ Charles R Greathouse IV, Jul 17 2011
-
[n^2*(n-1) for n in range(0, 40)] # Zerinvary Lajos, Dec 03 2009
A001296
4-dimensional pyramidal numbers: a(n) = (3*n+1)*binomial(n+2, 3)/4. Also Stirling2(n+2, n).
Original entry on oeis.org
0, 1, 7, 25, 65, 140, 266, 462, 750, 1155, 1705, 2431, 3367, 4550, 6020, 7820, 9996, 12597, 15675, 19285, 23485, 28336, 33902, 40250, 47450, 55575, 64701, 74907, 86275, 98890, 112840, 128216, 145112, 163625, 183855, 205905, 229881, 255892, 284050, 314470
Offset: 0
G.f. = x + 7*x^2 + 25*x^3 + 65*x^4 + 140*x^5 + 266*x^6 + 462*x^7 + 750*x^8 + 1155*x^9 + ...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 195.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 227, #16.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 166, Table 10.4/I/3).
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- P. Aluffi, Degrees of projections of rank loci, arXiv:1408.1702 [math.AG], 2014. ["After compiling the results of many explicit computations, we noticed that many of the numbers d_{n,r,S} appear in the existing literature in contexts far removed from the enumerative geometry of rank conditions; we owe this surprising (to us) observation to perusal of [Slo14]."]
- S. Butler and P. Karasik, A note on nested sums, J. Int. Seq. 13 (2010), 10.4.4, page 5.
- M. Griffiths, Remodified Bessel Functions via Coincidences and Near Coincidences, Journal of Integer Sequences, Vol. 14 (2011), Article 11.7.1.
- L. Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Chanticleer Press, NY, 1950, p. 36.
- C. Krishnamachaki, The operator (xD)^n, J. Indian Math. Soc., 15 (1923),3-4. [Annotated scanned copy]
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 29.
- T. Mansour, Restricted permutations by patterns of type 2-1, arXiv:math/0202219 [math.CO], 2002.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Stirling numbers of the 2nd kind.
- Index to sequences related to pyramidal numbers
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
a(n)=f(n, 2) where f is given in
A034261.
a(n)=
A093560(n+3, 4), (3, 1)-Pascal column.
Cf.
A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.
-
/* A000027 convolved with A000326: */ A000326:=func; [&+[(n-i+1)*A000326(i): i in [0..n]]: n in [0..40]]; // Bruno Berselli, Dec 06 2012
-
[(3*n+1)*Binomial(n+2,3)/4: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
-
A001296:=-(1+2*z)/(z-1)**5; # Simon Plouffe in his 1992 dissertation for sequence without the leading zero
-
Table[n*(1+n)*(2+n)*(1+3*n)/24, {n, 0, 100}]
CoefficientList[Series[x (1 + 2 x)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
Table[StirlingS2[n+2, n], {n, 0, 40}] (* Jean-François Alcover, Jun 24 2015 *)
Table[ListCorrelate[Accumulate[Range[n]],Range[n]],{n,0,40}]//Flatten (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,1,7,25,65},40] (* Harvey P. Dale, Aug 14 2017 *)
-
t(n)=n*(n+1)/2
for(i=1,30,print1(","sum(j=1,i,j*t(j))))
-
{a(n) = n * (n+1) * (n+2) * (3*n+1) / 24}; /* Michael Somos, Sep 04 2017 */
-
[stirling_number2(n+2,n) for n in range(0,38)] # Zerinvary Lajos, Mar 14 2009
A049450
Pentagonal numbers multiplied by 2: a(n) = n*(3*n-1).
Original entry on oeis.org
0, 2, 10, 24, 44, 70, 102, 140, 184, 234, 290, 352, 420, 494, 574, 660, 752, 850, 954, 1064, 1180, 1302, 1430, 1564, 1704, 1850, 2002, 2160, 2324, 2494, 2670, 2852, 3040, 3234, 3434, 3640, 3852, 4070, 4294, 4524, 4760, 5002, 5250, 5504, 5764
Offset: 0
Joe Keane (jgk(AT)jgk.org)
On a 4 X 4 chessboard pawns at the second row have (3+4+4+3) moves and pawns at the third row have (2+3+3+2) moves so a(3) = 24. - _Johannes W. Meijer_, Feb 04 2010
From _Adi Dani_, Jun 04 2011: (Start)
a(1)=2: the partitions of 6*1-1=5 into 3 parts are [1,1,3] and[1,2,2].
a(2)=10: the partitions of 6*2-1=11 into 3 parts are [1,1,9], [1,2,8], [1,3,7], [1,4,6], [1,5,5], [2,2,7], [2,3,6], [2,4,5], [3,3,5], and [3,4,4].
(End)
.
. o
. o o o
. o o o o o o
. o o o o o o o o o o
. o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o o o o o
. 2 10 24 44 70
- _Philippe Deléham_, Mar 30 2013
-
List([0..50], n-> n*(3*n-1)); # G. C. Greubel, Aug 31 2019
-
[n*(3*n-1) : n in [0..50]]; // Wesley Ivan Hurt, Sep 24 2017
-
seq(n*(3*n-1),n=0..44); # Zerinvary Lajos, Jun 12 2007
-
Table[n(3n-1),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,2,10},50] (* Harvey P. Dale, Jun 21 2014 *)
2*PolygonalNumber[5,Range[0,50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 01 2018 *)
-
a(n)=n*(3*n-1) \\ Charles R Greathouse IV, Nov 20 2012
-
[n*(3*n-1) for n in (0..50)] # G. C. Greubel, Aug 31 2019
A079478
Coefficient of x^0 in P(n,x) = (Product_{i=0..n-1} i!^2)/matdet(M(n)) of degree n^2 where M(n) is the n X n matrix m(i,j) = 1/(i+j+x).
Original entry on oeis.org
1, 2, 72, 172800, 60963840000, 5574884681318400000, 205619158526859285626880000000, 4394314874750658447092552646524928000000000, 73955304765761130113502867875624106401967636480000000000000
Offset: 0
Determinant of M(2) is 1/(x^4 + 12*x^3 + 53*x^2 + 102*x + 72) hence a(2)=72.
Central column in triangle
A009963.
-
seq(mul(mul(k+j,j=1..n), k=1..n), n=0..8); # Zerinvary Lajos, Jun 01 2007
-
Table[Product[Product[(i+j),{i,1,n}],{j,1,n}],{n,0,10}] (* Alexander Adamchuk, Apr 12 2006 *)
Table[BarnesG[2*n+2] / BarnesG[n+2]^2, {n,0,10}] (* Vaclav Kotesovec, Feb 28 2019 *)
-
a(n)=(n+1)*prod(i=0,n,(n+i)!)/prod(i=1,n+1,i!)
-
a(n) = prod(i=1, n, prod(j=1, n, i+j)); \\ Michel Marcus, Feb 27 2019
-
from math import prod, factorial
def A079478(n): return prod(i+j for i in range(1,n) for j in range(i+1,n+1))**2*factorial(n)<Chai Wah Wu, Nov 26 2023
A245334
A factorial-like triangle read by rows: T(0,0) = 1; T(n+1,0) = T(n,0)+1; T(n+1,k+1) = T(n,0)*T(n,k), k=0..n.
Original entry on oeis.org
1, 2, 1, 3, 4, 2, 4, 9, 12, 6, 5, 16, 36, 48, 24, 6, 25, 80, 180, 240, 120, 7, 36, 150, 480, 1080, 1440, 720, 8, 49, 252, 1050, 3360, 7560, 10080, 5040, 9, 64, 392, 2016, 8400, 26880, 60480, 80640, 40320, 10, 81, 576, 3528, 18144, 75600, 241920, 544320
Offset: 0
. 0: 1;
. 1: 2, 1;
. 2: 3, 4, 2;
. 3: 4, 9, 12, 6;
. 4: 5, 16, 36, 48, 24;
. 5: 6, 25, 80, 180, 240, 120;
. 6: 7, 36, 150, 480, 1080, 1440, 720;
. 7: 8, 49, 252, 1050, 3360, 7560, 10080, 5040;
. 8: 9, 64, 392, 2016, 8400, 26880, 60480, 80640, 40320;
. 9: 10, 81, 576, 3528, 18144, 75600, 241920, 544320, 725760, 362880.
Cf.
A000142,
A001715,
A001720,
A001725,
A001730,
A049388,
A049389,
A049398,
A051431,
A052849,
A070960.
-
a245334 n k = a245334_tabl !! n !! k
a245334_row n = a245334_tabl !! n
a245334_tabl = iterate (\row@(h:_) -> (h + 1) : map (* h) row) [1]
-
Table[(n!)/((n - k)!)*(n + 1 - k), {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Sep 10 2017 *)
A104257
Square array T(a,n) read by antidiagonals: replace 2^i with a^i in binary representation of n, where a,n >= 2.
Original entry on oeis.org
2, 3, 3, 4, 4, 4, 5, 5, 9, 5, 6, 6, 16, 10, 6, 7, 7, 25, 17, 12, 7, 8, 8, 36, 26, 20, 13, 8, 9, 9, 49, 37, 30, 21, 27, 9, 10, 10, 64, 50, 42, 31, 64, 28, 10, 11, 11, 81, 65, 56, 43, 125, 65, 30, 11, 12, 12, 100, 82, 72, 57, 216, 126, 68, 31, 12, 13, 13, 121, 101, 90, 73, 343
Offset: 2
Array begins:
2, 3, 4, 5, 6, 7, 8, 9, ...
3, 4, 9, 10, 12, 13, 27, 28, ...
4, 5, 16, 17, 20, 21, 64, 65, ...
5, 6, 25, 26, 30, 31, 125, 126, ...
6, 7, 36, 37, 42, 43, 216, 217, ...
7, 8, 49, 50, 56, 57, 343, 344, ...
8, 9, 64, 65, 72, 73, 512, 513, ...
9, 10, 81, 82, 90, 91, 729, 730, ...
...
Rows include (essentially)
A005836,
A000695,
A033042,
A033043,
A033044,
A033045,
A033046,
A033047,
A033048,
A033049,
A033050,
A033051,
A033052.
-
T[, 0] = 0; T[2, n] := n; T[a_, 2] := a;
T[a_, n_] := T[a, n] = If[EvenQ[n], a T[a, n/2], a T[a, (n-1)/2]+1];
Table[T[a-n+2, n], {a, 2, 13}, {n, 2, a}] // Flatten (* Jean-François Alcover, Feb 09 2021 *)
-
T(a, n) = fromdigits(binary(n), a); \\ Michel Marcus, Aug 19 2022
-
def T(a, n): return n if n < 2 else (max(a, n) if min(a, n) == 2 else a*T(a, n//2) + n%2)
print([T(a-n+2, n) for a in range(2, 14) for n in range(2, a+1)]) # Michael S. Branicky, Aug 02 2022
A104249
a(n) = (3*n^2 + n + 2)/2.
Original entry on oeis.org
1, 3, 8, 16, 27, 41, 58, 78, 101, 127, 156, 188, 223, 261, 302, 346, 393, 443, 496, 552, 611, 673, 738, 806, 877, 951, 1028, 1108, 1191, 1277, 1366, 1458, 1553, 1651, 1752, 1856, 1963, 2073, 2186, 2302, 2421, 2543, 2668, 2796, 2927, 3061, 3198, 3338, 3481
Offset: 0
The sequence of first differences delta_a(n) = a(n+1) - a(n) is 2, 5, 8, 11, 14, 17, 20, 23, 26, ...
The sequence of second differences delta_delta_a(n) = a(n+2) - 2*a(n+1) + a(n) is: 3, 3, 3, 3, 3, 3, 3, ... E.g., 78 - 2*58 + 41 = 3.
- Vincenzo Librandi, Table of n, a(n) for n = 0..3000
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Rick Mabry, Fibonacci Numbers, Integer Compositions, and Nets of Antiprisms, The American Mathematical Monthly, Vol. 126 (2019), no. 9, pp. 786-801.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
a104249 n = n*(3*n+1) `div` 2 + 1 -- Reinhard Zumkeller, May 11 2014
-
[(3*n^2+n+2)/2: n in [0..50]]; // Vincenzo Librandi, May 09 2011
-
a := proc (n) local i, u; option remember; u[0] := 1; u[1] := 3; u[2] := 8; for i from 3 to n do u[i] := -(4*u[i-3]-8*u[i-2]-2*u[i-1]+(-2*u[i-3]+2*u[i-2]-u[i-1])*i)/i end do; [seq(u[i],i = 0 .. n)] end proc;
-
A104249[n_] := (3*n^2 + n + 2)/2; Table[A104249[n], {n,0,100}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2011 *)
LinearRecurrence[{3,-3,1},{1,3,8},70] (* Harvey P. Dale, Jul 21 2023 *)
-
a(n)=n*(3*n+1)/2+1 \\ Charles R Greathouse IV, Oct 07 2015
A098547
a(n) = n^3 + n^2 + 1.
Original entry on oeis.org
1, 3, 13, 37, 81, 151, 253, 393, 577, 811, 1101, 1453, 1873, 2367, 2941, 3601, 4353, 5203, 6157, 7221, 8401, 9703, 11133, 12697, 14401, 16251, 18253, 20413, 22737, 25231, 27901, 30753, 33793, 37027, 40461, 44101, 47953, 52023, 56317, 60841, 65601, 70603, 75853
Offset: 0
Douglas Winston (douglas.winston(AT)srupc.com), Oct 26 2004
Cf.
A000578,
A001093,
A011379,
A027444,
A033431,
A033562,
A034262,
A053698,
A061317,
A066023,
A071568.
Showing 1-10 of 61 results.
Comments