cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 61 results. Next

A102637 Interleaved reading of A000578(n), A011379(n) and A027444(n).

Original entry on oeis.org

1, 8, 27, 12, 3, 64, 36, 14, 125, 80, 39, 216, 150, 84, 343, 252, 155, 512, 392, 258, 729, 576, 399, 1000, 810, 584, 1331, 1100, 819, 1728, 1452, 1110, 2197, 1872, 1463, 2744, 2366, 1884, 3375, 2940, 2379, 4096, 3600, 2954, 4913, 4352, 3615, 5832, 5202, 4368
Offset: 1

Views

Author

Giovanni Teofilatto, Feb 01 2005

Keywords

Programs

Formula

a(3n) = A000578(n+2), a(3n+1)=A011379(n+1), a(3n+2)=A027444(n) for n>=1. - R. J. Mathar, Feb 04 2008

Extensions

Edited by R. J. Mathar, Feb 04 2008

A002411 Pentagonal pyramidal numbers: a(n) = n^2*(n+1)/2.

Original entry on oeis.org

0, 1, 6, 18, 40, 75, 126, 196, 288, 405, 550, 726, 936, 1183, 1470, 1800, 2176, 2601, 3078, 3610, 4200, 4851, 5566, 6348, 7200, 8125, 9126, 10206, 11368, 12615, 13950, 15376, 16896, 18513, 20230, 22050, 23976, 26011, 28158, 30420, 32800, 35301, 37926, 40678
Offset: 0

Views

Author

Keywords

Comments

a(n) = n^2(n+1)/2 is half the number of colorings of three points on a line with n+1 colors. - R. H. Hardin, Feb 23 2002
Sum of n smallest multiples of n. - Amarnath Murthy, Sep 20 2002
a(n) = number of (n+6)-bit binary sequences with exactly 7 1's none of which is isolated. A 1 is isolated if its immediate neighbor(s) are 0. - David Callan, Jul 15 2004
Also as a(n) = (1/6)*(3*n^3+3*n^2), n > 0: structured trigonal prism numbers (cf. A100177 - structured prisms; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Nov 18 2005
If Y is a 3-subset of an n-set X then, for n >= 5, a(n-4) is the number of 5-subsets of X having at least two elements in common with Y. - Milan Janjic, Nov 23 2007
a(n-1), n >= 2, is the number of ways to have n identical objects in m=2 of altogether n distinguishable boxes (n-2 boxes stay empty). - Wolfdieter Lang, Nov 13 2007
a(n+1) is the convolution of (n+1) and (3n+1). - Paul Barry, Sep 18 2008
The number of 3-character strings from an alphabet of n symbols, if a string and its reversal are considered to be the same.
Partial sums give A001296. - Jonathan Vos Post, Mar 26 2011
a(n-1):=N_1(n), n >= 1, is the number of edges of n planes in generic position in three-dimensional space. See a comment under A000125 for general arrangement. Comment to Arnold's problem 1990-11, see the Arnold reference, p.506. - Wolfdieter Lang, May 27 2011
Partial sums of pentagonal numbers A000326. - Reinhard Zumkeller, Jul 07 2012
From Ant King, Oct 23 2012: (Start)
For n > 0, the digital roots of this sequence A010888(A002411(n)) form the purely periodic 9-cycle {1,6,9,4,3,9,7,9,9}.
For n > 0, the units' digits of this sequence A010879(A002411(n)) form the purely periodic 20-cycle {1,6,8,0,5,6,6,8,5,0,6,6,3,0,0,6,1,8,0,0}.
(End)
a(n) is the number of inequivalent ways to color a path graph having 3 nodes using at most n colors. Note, here there is no restriction on the color of adjacent nodes as in the above comment by R. H. Hardin (Feb 23 2002). Also, here the structures are counted up to graph isomorphism, where as in the above comment the "three points on a line" are considered to be embedded in the plane. - Geoffrey Critzer, Mar 20 2013
After 0, row sums of the triangle in A101468. - Bruno Berselli, Feb 10 2014
Latin Square Towers: Take a Latin square of order n, with symbols from 1 to n, and replace each symbol x with a tower of height x. Then the total number of unit cubes used is a(n). - Arun Giridhar, Mar 29 2015
This is the case k = n+4 of b(n,k) = n*((k-2)*n-(k-4))/2, which is the n-th k-gonal number. Therefore, this is the 3rd upper diagonal of the array in A139600. - Luciano Ancora, Apr 11 2015
For n > 0, a(n) is the number of compositions of n+7 into n parts avoiding the part 2. - Milan Janjic, Jan 07 2016
Also the Wiener index of the n-antiprism graph. - Eric W. Weisstein, Sep 07 2017
For n > 0, a(2n+1) is the number of non-isomorphic 5C_m-snakes, where m = 2n+1 or m = 2n (for n >= 2). A kC_n-snake is a connected graph in which the k >= 2 blocks are isomorphic to the cycle C_n and the block-cutpoint graph is a path. - Christian Barrientos, May 15 2019
For n >= 1, a(n-1) is the number of 0°- and 45°-tilted squares that can be drawn by joining points in an n X n lattice. - Paolo Xausa, Apr 13 2021
a(n) is the number of all possible products of n rolls of a six-sided die. This can be easily seen by the recursive formula a(n) = a(n - 1) + 2 * binomial(n, 2) + binomial(n + 1, 2). - Rafal Walczak, Jun 15 2024
a(n) is the number of all triples consisting of nonnegative integers smaller than n such that the sum of the first two integers is less than n. - Ruediger Jehn, Aug 17 2025

Examples

			a(3)=18 because 4 identical balls can be put into m=2 of n=4 distinguishable boxes in binomial(4,2)*(2!/(1!*1!) + 2!/2!) = 6*(2+1) = 18 ways. The m=2 part partitions of 4, namely (1,3) and (2,2), specify the filling of each of the 6 possible two-box choices. - _Wolfdieter Lang_, Nov 13 2007
		

References

  • V. I. Arnold (ed.), Arnold's Problems, Springer, 2004, comments on Problem 1990-11 (p. 75), pp. 503-510. Numbers N_1.
  • Christian Barrientos, Graceful labelings of cyclic snakes, Ars Combin., Vol. 60 (2001), pp. 85-96.
  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 166, Table 10.4/I/5).
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see Vol. 2, p. 2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A006002(n) = -a(-1-n).
a(n) = A093560(n+2, 3), (3, 1)-Pascal column.
A row or column of A132191.
Second column of triangle A103371.
Cf. similar sequences listed in A237616.

Programs

  • GAP
    List([0..45], n->n^2*(n+1)/2); # Muniru A Asiru, Feb 19 2018
  • Haskell
    a002411 n = n * a000217 n  -- Reinhard Zumkeller, Jul 07 2012
    
  • Magma
    [n^2*(n+1)/2: n in [0..40]]; // Wesley Ivan Hurt, May 25 2014
    
  • Maple
    seq(n^2*(n+1)/2, n=0..40);
  • Mathematica
    Table[n^2 (n + 1)/2, {n, 0, 40}]
    LinearRecurrence[{4, -6, 4, -1}, {0, 1, 6, 18}, 50] (* Harvey P. Dale, Oct 20 2011 *)
    Nest[Accumulate, Range[1, 140, 3], 2] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2012 *)
    CoefficientList[Series[x (1 + 2 x) / (1 - x)^4, {x, 0, 45}], x] (* Vincenzo Librandi, Jan 08 2016 *)
  • PARI
    a(n)=n^2*(n+1)/2
    
  • PARI
    concat(0, Vec(x*(1+2*x)/(1-x)^4 + O(x^100))) \\ Altug Alkan, Jan 07 2016
    

Formula

Average of n^2 and n^3.
G.f.: x*(1+2*x)/(1-x)^4. - Simon Plouffe in his 1992 dissertation
a(n) = n*Sum_{k=0..n} (n-k) = n*Sum_{k=0..n} k. - Paul Barry, Jul 21 2003
a(n) = n*A000217(n). - Xavier Acloque, Oct 27 2003
a(n) = (1/2)*Sum_{j=1..n} Sum_{i=1..n} (i+j) = (1/2)*(n^2+n^3) = (1/2)*A011379(n). - Alexander Adamchuk, Apr 13 2006
Row sums of triangle A127739, triangle A132118; and binomial transform of [1, 5, 7, 3, 0, 0, 0, ...] = (1, 6, 18, 40, 75, ...). - Gary W. Adamson, Aug 10 2007
G.f.: x*F(2,3;1;x). - Paul Barry, Sep 18 2008
Sum_{j>=1} 1/a(j) = hypergeom([1, 1, 1], [2, 3], 1) = -2 + 2*zeta(2) = A195055 - 2. - Stephen Crowley, Jun 28 2009
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=0, a(1)=1, a(2)=6, a(3)=18. - Harvey P. Dale, Oct 20 2011
From Ant King, Oct 23 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 3.
a(n) = (n+1)*(2*A000326(n)+n)/6 = A000292(n) + 2*A000292(n-1).
a(n) = A000330(n)+A000292(n-1) = A000217(n) + 3*A000292(n-1).
a(n) = binomial(n+2,3) + 2*binomial(n+1,3).
(End)
a(n) = (A000330(n) + A002412(n))/2 = (A000292(n) + A002413(n))/2. - Omar E. Pol, Jan 11 2013
a(n) = (24/(n+3)!)*Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*j^(n+3). - Vladimir Kruchinin, Jun 04 2013
Sum_{n>=1} a(n)/n! = (7/2)*exp(1). - Richard R. Forberg, Jul 15 2013
E.g.f.: x*(2 + 4*x + x^2)*exp(x)/2. - Ilya Gutkovskiy, May 31 2016
From R. J. Mathar, Jul 28 2016: (Start)
a(n) = A057145(n+4,n).
a(n) = A080851(3,n-1). (End)
For n >= 1, a(n) = (Sum_{i=1..n} i^2) + Sum_{i=0..n-1} i^2*((i+n) mod 2). - Paolo Xausa, Apr 13 2021
a(n) = Sum_{k=1..n} GCD(k,n) * LCM(k,n). - Vaclav Kotesovec, May 22 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = 2 + Pi^2/6 - 4*log(2). - Amiram Eldar, Jan 03 2022

A045991 a(n) = n^3 - n^2.

Original entry on oeis.org

0, 0, 4, 18, 48, 100, 180, 294, 448, 648, 900, 1210, 1584, 2028, 2548, 3150, 3840, 4624, 5508, 6498, 7600, 8820, 10164, 11638, 13248, 15000, 16900, 18954, 21168, 23548, 26100, 28830, 31744, 34848, 38148, 41650, 45360, 49284, 53428, 57798, 62400, 67240, 72324
Offset: 0

Views

Author

Keywords

Comments

Number of edges in the line graph of the complete bipartite graph of order 2n, L(K_n,n). - Roberto E. Martinez II, Jan 07 2002
Number of edges of the Cartesian product of two complete graphs K_n X K_n. - Roberto E. Martinez II, Jan 07 2002
That is, number of edges in the n X n rook graph. - Eric W. Weisstein, Jun 20 2017
n such that x^3 + x^2 + n factors over the integers. - James R. Buddenhagen, Apr 19 2005
Also the number of triangles in a 2 X n grid of points and therefore also (n choose 2) * (n choose 1) * 2, or (2n choose 3) - 2*(n choose 3). - Joshua Zucker, Jan 11 2006
Nonnegative X values of solutions to the equation (X-Y)^3-XY=0. To find Y values: b(n)=(n+1)*n^2 (see A011379). I proved that, if(X,Y) is different from (0,0) and m=2, 4, 6, 8, 10, 12,..., then the equation (X-Y)^m-XY=0,... has no solution. - Mohamed Bouhamida, May 10 2006
For n>=1, a(n) is equal to the number of functions f:{1,2,3}->{1,2,...,n} such that for a fixed x in {1,2,3} and a fixed y in {1,2,...,n} we have f(x)<>y. - Aleksandar M. Janjic and Milan Janjic, Mar 13 2007
a(n) equals the coefficient of log(2) in 2F1(n-1,n-1,n+1,-1). - John M. Campbell, Jul 16 2011
Define the infinite square array m(n,k) = (n-k)^2 for 1<=k<=n below the diagonal and m(n,k) = (k+n)(k-n) for 1<=n<=k above the diagonal. Then a(n) = Sum_{k=1..n} m(n,k) + Sum_{r=1..n} m(r,n), the "hook sum" of the terms left from m(n,n) and above m(n,n). - J. M. Bergot, Aug 16 2013
Partial sums of A049451. - Bruno Berselli, Feb 10 2014
Volume of an extruded rectangular brick with side lengths n, n and n-1. - Luciano Ancora, Jun 24 2015

Crossrefs

Cf. A011379, A047929, A114364 (essentially the same).

Programs

Formula

G.f.: 2*x^2*(x+2)/(-1+x)^4 = 6/(-1+x)^4+10/(-1+x)^2+14/(-1+x)^3+2/(-1+x). - R. J. Mathar, Nov 19 2007
a(n) = floor(n^5/(n^2+n+1)). - Gary Detlefs, Feb 10 2010
a(n) = 4*binomial(n,2) + 6*binomial(n,3). - Gary Detlefs, Mar 25 2012
a(n+1) = 2*A006002(n). - R. J. Mathar, Oct 31 2012
a(n) = (A000217(n-1)+A000217(n))*(A000217(n-1)-A000217(n-2)). - J. M. Bergot, Oct 31 2012
From Wesley Ivan Hurt, May 19 2015: (Start)
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4).
a(n) = Sum_{k=0..n-1} Sum_{i=n-k-1..n+k-1} i. (End)
Sum_{n>=2} 1/a(n) = 2 - Pi^2/6. - Daniel Suteu, Feb 06 2017
Sum_{n>=2} (-1)^n/a(n) = Pi^2/12 + 2*log(2) - 2. - Amiram Eldar, Jul 05 2020
E.g.f.: exp(x)*x^2*(2 + x). - Stefano Spezia, May 20 2021
Product_{n>=2} (1 - 1/a(n)) = A146485. - Amiram Eldar, Nov 22 2022
From J.S. Seneschal, Jun 21 2024: (Start)
a(n) = (n-1)*A000290(n).
a(n) = n*A002378(n-1).
a(n) = A011379(n) - A001105(n). (End)

A001296 4-dimensional pyramidal numbers: a(n) = (3*n+1)*binomial(n+2, 3)/4. Also Stirling2(n+2, n).

Original entry on oeis.org

0, 1, 7, 25, 65, 140, 266, 462, 750, 1155, 1705, 2431, 3367, 4550, 6020, 7820, 9996, 12597, 15675, 19285, 23485, 28336, 33902, 40250, 47450, 55575, 64701, 74907, 86275, 98890, 112840, 128216, 145112, 163625, 183855, 205905, 229881, 255892, 284050, 314470
Offset: 0

Views

Author

Keywords

Comments

Permutations avoiding 12-3 that contain the pattern 31-2 exactly once.
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Nov 18 2005
Partial sums of A002411. - Jonathan Vos Post, Mar 16 2006
If Y is a 3-subset of an n-set X then, for n>=6, a(n-5) is the number of 6-subsets of X having at least two elements in common with Y. - Milan Janjic, Nov 23 2007
Starting with 1 = binomial transform of [1, 6, 12, 10, 3, 0, 0, 0, ...]. Equals row sums of triangle A143037. - Gary W. Adamson, Jul 18 2008
Rephrasing the Perry formula of 2003: a(n) is the sum of all products of all two numbers less than or equal to n, including the squares. Example: for n=3 the sum of these products is 1*1 + 1*2 + 1*3 + 2*2 + 2*3 + 3*3 = 25. - J. M. Bergot, Jul 16 2011
Half of the partial sums of A011379. [Jolley, Summation of Series, Dover (1961), page 12 eq (66).] - R. J. Mathar, Oct 03 2011
Also the number of (w,x,y,z) with all terms in {1,...,n+1} and w < x >= y > z (see A211795). - Clark Kimberling, May 19 2012
Convolution of A000027 with A000326. - Bruno Berselli, Dec 06 2012
This sequence is related to A000292 by a(n) = n*A000292(n) - Sum_{i=0..n-1} A000292(i) for n>0. - Bruno Berselli, Nov 23 2017
a(n-2) is the maximum number of intersections made from the perpendicular bisectors of all pair combinations of n points. - Ian Tam, Dec 22 2020

Examples

			G.f. = x + 7*x^2 + 25*x^3 + 65*x^4 + 140*x^5 + 266*x^6 + 462*x^7 + 750*x^8 + 1155*x^9 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 195.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 227, #16.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 166, Table 10.4/I/3).
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n)=f(n, 2) where f is given in A034261.
a(n)= A093560(n+3, 4), (3, 1)-Pascal column.
Cf. A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.
Cf. similar sequences listed in A241765 and A254142.
Cf. A000914.

Programs

  • Magma
    /* A000027 convolved with A000326: */ A000326:=func; [&+[(n-i+1)*A000326(i): i in [0..n]]: n in [0..40]]; // Bruno Berselli, Dec 06 2012
    
  • Magma
    [(3*n+1)*Binomial(n+2,3)/4: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
  • Maple
    A001296:=-(1+2*z)/(z-1)**5; # Simon Plouffe in his 1992 dissertation for sequence without the leading zero
  • Mathematica
    Table[n*(1+n)*(2+n)*(1+3*n)/24, {n, 0, 100}]
    CoefficientList[Series[x (1 + 2 x)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
    Table[StirlingS2[n+2, n], {n, 0, 40}] (* Jean-François Alcover, Jun 24 2015 *)
    Table[ListCorrelate[Accumulate[Range[n]],Range[n]],{n,0,40}]//Flatten (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,1,7,25,65},40] (* Harvey P. Dale, Aug 14 2017 *)
  • PARI
    t(n)=n*(n+1)/2
    for(i=1,30,print1(","sum(j=1,i,j*t(j))))
    
  • PARI
    {a(n) = n * (n+1) * (n+2) * (3*n+1) / 24}; /* Michael Somos, Sep 04 2017 */
    
  • Sage
    [stirling_number2(n+2,n) for n in range(0,38)] # Zerinvary Lajos, Mar 14 2009
    

Formula

a(n) = n*(1+n)*(2+n)*(1+3*n)/24. - T. D. Noe, Jan 21 2008
G.f.: x*(1+2*x)/(1-x)^5. - Paul Barry, Jul 23 2003
a(n) = Sum_{j=0..n} j*A000217(j). - Jon Perry, Jul 28 2003
E.g.f. with offset -1: exp(x)*(1*(x^2)/2! + 4*(x^3)/3! + 3*(x^4)/4!). For the coefficients [1, 4, 3] see triangle A112493.
E.g.f. x*exp(x)*(24 + 60*x + 28*x^2 + 3*x^3)/24 (above e.g.f. differentiated).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 3. - Kieren MacMillan, Sep 29 2008
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Jaume Oliver Lafont, Nov 23 2008
O.g.f. is D^2(x/(1-x)) = D^3(x), where D is the operator x/(1-x)*d/dx. - Peter Bala, Jul 02 2012
a(n) = A153978(n)/2. - J. M. Bergot, Aug 09 2013
a(n) = A002817(n) + A000292(n-1). - J. M. Bergot, Aug 29 2013; [corrected by Cyril Damamme, Feb 26 2018]
a(n) = A000914(n+1) - 2 * A000330(n+1). - Antal Pinter, Dec 31 2015
a(n) = A080852(3,n-1). - R. J. Mathar, Jul 28 2016
a(n) = 1*(1+2+...+n) + 2*(2+3+...+n) + ... + n*n. For example, a(6) = 266 = 1(1+2+3+4+5+6) + 2*(2+3+4+5+6) + 3*(3+4+5+6) + 4*(4+5+6) + 5*(5+6) + 6*(6).- J. M. Bergot, Apr 20 2017
a(n) = A000914(-2-n) for all n in Z. - Michael Somos, Sep 04 2017
a(n) = A000292(n) + A050534(n+1). - Cyril Damamme, Feb 26 2018
From Amiram Eldar, Jul 02 2020: (Start)
Sum_{n>=1} 1/a(n) = (6/5) * (47 - 3*sqrt(3)*Pi - 27*log(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = (6/5) * (16*log(2) + 6*sqrt(3)*Pi - 43). (End)

A049450 Pentagonal numbers multiplied by 2: a(n) = n*(3*n-1).

Original entry on oeis.org

0, 2, 10, 24, 44, 70, 102, 140, 184, 234, 290, 352, 420, 494, 574, 660, 752, 850, 954, 1064, 1180, 1302, 1430, 1564, 1704, 1850, 2002, 2160, 2324, 2494, 2670, 2852, 3040, 3234, 3434, 3640, 3852, 4070, 4294, 4524, 4760, 5002, 5250, 5504, 5764
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

From Floor van Lamoen, Jul 21 2001: (Start)
Write 1,2,3,4,... in a hexagonal spiral around 0, then a(n) is the sequence found by reading the line from 0 in the direction 0,2,.... The spiral begins:
.
56--55--54--53--52
/ \
57 33--32--31--30 51
/ / \ \
58 34 16--15--14 29 50
/ / / \ \ \
59 35 17 5---4 13 28 49
/ / / / \ \ \ \
60 36 18 6 0 3 12 27 48
/ / / / / . / / / /
61 37 19 7 1---2 11 26 47
\ \ \ \ . / / /
62 38 20 8---9--10 25 46
\ \ \ . / /
63 39 21--22--23--24 45
\ \ . /
64 40--41--42--43--44
\ .
65--66--67--68--69--70
(End)
Starting with offset 1 = binomial transform of [2, 8, 6, 0, 0, 0, ...]. - Gary W. Adamson, Jan 09 2009
Number of possible pawn moves on an (n+1) X (n+1) chessboard (n=>3). - Johannes W. Meijer, Feb 04 2010
a(n) = A069905(6n-1): Number of partitions of 6*n-1 into 3 parts. - Adi Dani, Jun 04 2011
Even octagonal numbers divided by 4. - Omar E. Pol, Aug 19 2011
Partial sums give A011379. - Omar E. Pol, Jan 12 2013
First differences are A016933; second differences equal 6. - Bob Selcoe, Apr 02 2015
For n >= 1, the continued fraction expansion of sqrt(27*a(n)) is [9n-2; {2, 2n-1, 6, 2n-1, 2, 18n-4}]. - Magus K. Chu, Oct 13 2022

Examples

			On a 4 X 4 chessboard pawns at the second row have (3+4+4+3) moves and pawns at the third row have (2+3+3+2) moves so a(3) = 24. - _Johannes W. Meijer_, Feb 04 2010
From _Adi Dani_, Jun 04 2011: (Start)
a(1)=2: the partitions of 6*1-1=5 into 3 parts are [1,1,3] and[1,2,2].
a(2)=10: the partitions of 6*2-1=11 into 3 parts are [1,1,9], [1,2,8], [1,3,7], [1,4,6], [1,5,5], [2,2,7], [2,3,6], [2,4,5], [3,3,5], and [3,4,4].
(End)
.
.                                                         o
.                                                       o o o
.                                      o              o o o o o
.                                    o o o          o o o o o o o
.                       o          o o o o o      o o o o o o o o o
.                     o o o      o o o o o o o    o o o o o o o o o
.            o      o o o o o    o o o o o o o    o o o o o o o o o
.          o o o    o o o o o    o o o o o o o    o o o o o o o o o
.    o     o o o    o o o o o    o o o o o o o    o o o o o o o o o
.    o     o o o    o o o o o    o o o o o o o    o o o o o o o o o
.    2      10         24             44                 70
- _Philippe Deléham_, Mar 30 2013
		

Crossrefs

Cf. A000567.
Bisection of A001859. Cf. A045944, A000326, A033579, A027599, A049451.
Cf. A033586 (King), A035005 (Queen), A035006 (Rook), A035008 (Knight) and A002492 (Bishop).
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488. [Bruno Berselli, Jun 10 2013]
Cf. sequences listed in A254963.

Programs

  • GAP
    List([0..50], n-> n*(3*n-1)); # G. C. Greubel, Aug 31 2019
  • Magma
    [n*(3*n-1) : n in [0..50]]; // Wesley Ivan Hurt, Sep 24 2017
    
  • Maple
    seq(n*(3*n-1),n=0..44); # Zerinvary Lajos, Jun 12 2007
  • Mathematica
    Table[n(3n-1),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,2,10},50] (* Harvey P. Dale, Jun 21 2014 *)
    2*PolygonalNumber[5,Range[0,50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 01 2018 *)
  • PARI
    a(n)=n*(3*n-1) \\ Charles R Greathouse IV, Nov 20 2012
    
  • Sage
    [n*(3*n-1) for n in (0..50)] # G. C. Greubel, Aug 31 2019
    

Formula

O.g.f.: A(x) = 2*x*(1+2*x)/(1-x)^3.
a(n) = A049452(n) - A033428(n). - Zerinvary Lajos, Jun 12 2007
a(n) = 2*A000326(n), twice pentagonal numbers. - Omar E. Pol, May 14 2008
a(n) = A022264(n) - A000217(n). - Reinhard Zumkeller, Oct 09 2008
a(n) = a(n-1) + 6*n - 4 (with a(0)=0). - Vincenzo Librandi, Aug 06 2010
a(n) = A014642(n)/4 = A033579(n)/2. - Omar E. Pol, Aug 19 2011
a(n) = A000290(n) + A000384(n) = A000217(n) + A000566(n). - Omar E. Pol, Jan 11 2013
a(n+1) = A014107(n+2) + A000290(n). - Philippe Deléham, Mar 30 2013
E.g.f.: x*(2 + 3*x)*exp(x). - Vincenzo Librandi, Apr 28 2016
a(n) = (2/3)*A000217(3*n-1). - Bruno Berselli, Feb 13 2017
a(n) = A002061(n) + A056220(n). - Bruce J. Nicholson, Sep 21 2017
From Amiram Eldar, Feb 20 2022: (Start)
Sum_{n>=1} 1/a(n) = 3*log(3)/2 - Pi/(2*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/sqrt(3) - 2*log(2). (End)
From Leo Tavares, Feb 23 2022: (Start)
a(n) = A003215(n) - A016813(n).
a(n) = 2*A000290(n) + 2*A000217(n-1). (End)

A079478 Coefficient of x^0 in P(n,x) = (Product_{i=0..n-1} i!^2)/matdet(M(n)) of degree n^2 where M(n) is the n X n matrix m(i,j) = 1/(i+j+x).

Original entry on oeis.org

1, 2, 72, 172800, 60963840000, 5574884681318400000, 205619158526859285626880000000, 4394314874750658447092552646524928000000000, 73955304765761130113502867875624106401967636480000000000000
Offset: 0

Views

Author

Benoit Cloitre, Jan 15 2003

Keywords

Comments

Product of all matrix elements of n X n matrix M(i,j) = i+j (i,j=1..n). - Alexander Adamchuk, Apr 12 2006

Examples

			Determinant of M(2) is 1/(x^4 + 12*x^3 + 53*x^2 + 102*x + 72) hence a(2)=72.
		

Crossrefs

Cf. A011379.
Central column in triangle A009963.

Programs

  • Maple
    seq(mul(mul(k+j,j=1..n), k=1..n), n=0..8); # Zerinvary Lajos, Jun 01 2007
  • Mathematica
    Table[Product[Product[(i+j),{i,1,n}],{j,1,n}],{n,0,10}] (* Alexander Adamchuk, Apr 12 2006 *)
    Table[BarnesG[2*n+2] / BarnesG[n+2]^2, {n,0,10}] (* Vaclav Kotesovec, Feb 28 2019 *)
  • PARI
    a(n)=(n+1)*prod(i=0,n,(n+i)!)/prod(i=1,n+1,i!)
    
  • PARI
    a(n) = prod(i=1, n, prod(j=1, n, i+j)); \\ Michel Marcus, Feb 27 2019
    
  • Python
    from math import prod, factorial
    def A079478(n): return prod(i+j for i in range(1,n) for j in range(i+1,n+1))**2*factorial(n)<Chai Wah Wu, Nov 26 2023

Formula

a(n) = (n+1)*(Product_{i=0..n} (n+i)!)/Product_{i=1..n+1} i!.
a(n) = A000178(2n)/A000178(n)^2, i.e., "central supercombinations" by analogy with A000984. - Henry Bottomley, May 14 2005
a(n) = Product_{j=1..n} Product_{i=1..n} (i + j). - Alexander Adamchuk, Apr 12 2006
Asymptotic: a(n) ~ (2*n+1)^(2*n^2 + 2*n + 5/12)*(n+1)^(-n^2 - 2*n - 5/6) * exp(-zeta'(-1) - (3/2)*n^2 + 3/4)/(sqrt(2*Pi)). - Peter Luschny, Nov 26 2012
a(n) = BarnesG(2*n+2) / BarnesG(n+2)^2. - Vaclav Kotesovec, Feb 28 2019
a(n) ~ A * 2^(2*n*(n+1) - 1/12) * n^(n^2 - 5/12) / (sqrt(Pi) * exp(3*n^2/2 + 1/12)), where A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Dec 04 2023

A245334 A factorial-like triangle read by rows: T(0,0) = 1; T(n+1,0) = T(n,0)+1; T(n+1,k+1) = T(n,0)*T(n,k), k=0..n.

Original entry on oeis.org

1, 2, 1, 3, 4, 2, 4, 9, 12, 6, 5, 16, 36, 48, 24, 6, 25, 80, 180, 240, 120, 7, 36, 150, 480, 1080, 1440, 720, 8, 49, 252, 1050, 3360, 7560, 10080, 5040, 9, 64, 392, 2016, 8400, 26880, 60480, 80640, 40320, 10, 81, 576, 3528, 18144, 75600, 241920, 544320
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 30 2014

Keywords

Comments

row(0) = {1}; row(n+1) = row(n) multiplied by n and prepended with (n+1);
A111063(n+1) = sum of n-th row;
T(2*n,n) = A002690(n), central terms;
T(n,0) = n + 1;
T(n,1) = A000290(n), n > 0;
T(n,2) = A011379(n-1), n > 1;
T(n,3) = A047927(n), n > 2;
T(n,4) = A192849(n-1), n > 3;
T(n,5) = A000142(5) * A027810(n-5), n > 4;
T(n,6) = A000142(6) * A027818(n-6), n > 5;
T(n,7) = A000142(7) * A056001(n-7), n > 6;
T(n,8) = A000142(8) * A056003(n-8), n > 7;
T(n,9) = A000142(9) * A056114(n-9), n > 8;
T(n,n-10) = 11 * A051431(n-10), n > 9;
T(n,n-9) = 10 * A049398(n-9), n > 8;
T(n,n-8) = 9 * A049389(n-8), n > 7;
T(n,n-7) = 8 * A049388(n-7), n > 6;
T(n,n-6) = 7 * A001730(n), n > 5;
T(n,n-5) = 6 * A001725(n), n > 5;
T(n,n-4) = 5 * A001720(n), n > 4;
T(n,n-3) = 4 * A001715(n), n > 2;
T(n,n-2) = A070960(n), n > 1;
T(n,n-1) = A052849(n), n > 0;
T(n,n) = A000142(n);
T(n,k) = A137948(n,k) * A007318(n,k), 0 <= k <= n.

Examples

			.  0:   1;
.  1:   2,  1;
.  2:   3,  4,   2;
.  3:   4,  9,  12,    6;
.  4:   5, 16,  36,   48,    24;
.  5:   6, 25,  80,  180,   240,   120;
.  6:   7, 36, 150,  480,  1080,  1440,    720;
.  7:   8, 49, 252, 1050,  3360,  7560,  10080,   5040;
.  8:   9, 64, 392, 2016,  8400, 26880,  60480,  80640,  40320;
.  9:  10, 81, 576, 3528, 18144, 75600, 241920, 544320, 725760, 362880.
		

Crossrefs

Programs

  • Haskell
    a245334 n k = a245334_tabl !! n !! k
    a245334_row n = a245334_tabl !! n
    a245334_tabl = iterate (\row@(h:_) -> (h + 1) : map (* h) row) [1]
  • Mathematica
    Table[(n!)/((n - k)!)*(n + 1 - k), {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Sep 10 2017 *)

Formula

T(n,k) = n!*(n+1-k)/(n-k)!. - Werner Schulte, Sep 09 2017

A104257 Square array T(a,n) read by antidiagonals: replace 2^i with a^i in binary representation of n, where a,n >= 2.

Original entry on oeis.org

2, 3, 3, 4, 4, 4, 5, 5, 9, 5, 6, 6, 16, 10, 6, 7, 7, 25, 17, 12, 7, 8, 8, 36, 26, 20, 13, 8, 9, 9, 49, 37, 30, 21, 27, 9, 10, 10, 64, 50, 42, 31, 64, 28, 10, 11, 11, 81, 65, 56, 43, 125, 65, 30, 11, 12, 12, 100, 82, 72, 57, 216, 126, 68, 31, 12, 13, 13, 121, 101, 90, 73, 343
Offset: 2

Views

Author

Ralf Stephan, Mar 05 2005

Keywords

Comments

Sums of distinct powers of a. Numbers having only {0,1} in a-ary representation.

Examples

			Array begins:
  2,  3,  4,  5,  6,  7,   8,   9, ...
  3,  4,  9, 10, 12, 13,  27,  28, ...
  4,  5, 16, 17, 20, 21,  64,  65, ...
  5,  6, 25, 26, 30, 31, 125, 126, ...
  6,  7, 36, 37, 42, 43, 216, 217, ...
  7,  8, 49, 50, 56, 57, 343, 344, ...
  8,  9, 64, 65, 72, 73, 512, 513, ...
  9, 10, 81, 82, 90, 91, 729, 730, ...
  ...
		

Crossrefs

Programs

  • Mathematica
    T[, 0] = 0; T[2, n] := n; T[a_, 2] := a;
    T[a_, n_] := T[a, n] = If[EvenQ[n], a T[a, n/2], a T[a, (n-1)/2]+1];
    Table[T[a-n+2, n], {a, 2, 13}, {n, 2, a}] // Flatten (* Jean-François Alcover, Feb 09 2021 *)
  • PARI
    T(a, n) = fromdigits(binary(n), a); \\ Michel Marcus, Aug 19 2022
  • Python
    def T(a, n): return n if n < 2 else (max(a, n) if min(a, n) == 2 else a*T(a, n//2) + n%2)
    print([T(a-n+2, n) for a in range(2, 14) for n in range(2, a+1)]) # Michael S. Branicky, Aug 02 2022
    

Formula

T(a, n) = (1/(a-1))*Sum_{j>=1} floor((n+2^(j-1))/2^j) * ((a-2)*a^(j-1) + 1).
T(a, n) = (1/(a-1))*Sum_{j=1..n} ((a-2)*a^A007814(j) + 1).
G.f. of a-th row: (1/(1-x)) * Sum_{k>=0} a^k*x^2^k/(1+x^2^k).
Recurrence: T(a, 2n) = a*T(a, n), T(a, 2n+1) = a*T(a, n) + 1, T(a, 0) = 0.

A104249 a(n) = (3*n^2 + n + 2)/2.

Original entry on oeis.org

1, 3, 8, 16, 27, 41, 58, 78, 101, 127, 156, 188, 223, 261, 302, 346, 393, 443, 496, 552, 611, 673, 738, 806, 877, 951, 1028, 1108, 1191, 1277, 1366, 1458, 1553, 1651, 1752, 1856, 1963, 2073, 2186, 2302, 2421, 2543, 2668, 2796, 2927, 3061, 3198, 3338, 3481
Offset: 0

Views

Author

Thomas Wieder, Feb 26 2005

Keywords

Comments

Second differences are all 3.
Related to the sequence of odd numbers A005408 since for these numbers the first differences are all 2.
Column 2 of A114202. - Paul Barry, Nov 17 2005
Equals third row of A167560 divided by 2. - Johannes W. Meijer, Nov 12 2009
A242357(a(n)) = n + 1. - Reinhard Zumkeller, May 11 2014
Also, this sequence is related to A011379, for n>0, by A011379(n) = n*a(n) - Sum_{i=0..n-1} a(i). - Bruno Berselli, Jul 08 2015
The number of Hamiltonian nonisomorphic unfoldings in an n-gonal Archimedean antiprism. See sequence A284647. - Rick Mabry, Apr 10 2021

Examples

			The sequence of first differences delta_a(n) = a(n+1) - a(n) is 2, 5, 8, 11, 14, 17, 20, 23, 26, ...
The sequence of second differences delta_delta_a(n) = a(n+2) - 2*a(n+1) + a(n) is: 3, 3, 3, 3, 3, 3, 3, ... E.g., 78 - 2*58 + 41 = 3.
		

Crossrefs

Counts special cases of A284647.

Programs

  • Haskell
    a104249 n = n*(3*n+1) `div` 2 + 1 -- Reinhard Zumkeller, May 11 2014
    
  • Magma
    [(3*n^2+n+2)/2: n in [0..50]]; // Vincenzo Librandi, May 09 2011
    
  • Maple
    a := proc (n) local i, u; option remember; u[0] := 1; u[1] := 3; u[2] := 8; for i from 3 to n do u[i] := -(4*u[i-3]-8*u[i-2]-2*u[i-1]+(-2*u[i-3]+2*u[i-2]-u[i-1])*i)/i end do; [seq(u[i],i = 0 .. n)] end proc;
  • Mathematica
    A104249[n_] := (3*n^2 + n + 2)/2; Table[A104249[n], {n,0,100}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2011 *)
    LinearRecurrence[{3,-3,1},{1,3,8},70] (* Harvey P. Dale, Jul 21 2023 *)
  • PARI
    a(n)=n*(3*n+1)/2+1 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (1 + 2*x^2)/(1 - x)^3.
Recurrence: (n+3)*u(n+3) + (-5-n)*u(n+2)*(-2+2*n)*u(n+1) + (-2-2*n)*u(n) = 0 for n >= 0 with u(0) = 1, u(1) = 3, and u(2) = 8.
From Paul Barry, Nov 17 2005: (Start)
a(0) = 1, a(n) = a(n-1) + 3*n - 1 for n > 0;
a(n) = Sum_{k=0..n} C(n, k)*C(2, k)*J(k+1), where J(n) = A001045(n). (End)
Binomial transform of [1, 2, 3, 0, 0, 0, ...]. - Gary W. Adamson, Apr 23 2008
E.g.f.: exp(x)*(2 + 4*x + 3*x^2)/2. - Stefano Spezia, Apr 10 2021

A098547 a(n) = n^3 + n^2 + 1.

Original entry on oeis.org

1, 3, 13, 37, 81, 151, 253, 393, 577, 811, 1101, 1453, 1873, 2367, 2941, 3601, 4353, 5203, 6157, 7221, 8401, 9703, 11133, 12697, 14401, 16251, 18253, 20413, 22737, 25231, 27901, 30753, 33793, 37027, 40461, 44101, 47953, 52023, 56317, 60841, 65601, 70603, 75853
Offset: 0

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Oct 26 2004

Keywords

Crossrefs

Programs

Formula

From Colin Barker, Aug 29 2014: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: (1 - x + 7*x^2 - x^3)/(1-x)^4. (End)
a(n) = A081423(n) + A000217(n-1). - Bruce J. Nicholson, Jan 06 2019
E.g.f.: exp(x)*(1 + 2*x + 4*x^2 + x^3). - Elmo R. Oliveira, Apr 20 2025
Showing 1-10 of 61 results. Next