cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A104257 Square array T(a,n) read by antidiagonals: replace 2^i with a^i in binary representation of n, where a,n >= 2.

Original entry on oeis.org

2, 3, 3, 4, 4, 4, 5, 5, 9, 5, 6, 6, 16, 10, 6, 7, 7, 25, 17, 12, 7, 8, 8, 36, 26, 20, 13, 8, 9, 9, 49, 37, 30, 21, 27, 9, 10, 10, 64, 50, 42, 31, 64, 28, 10, 11, 11, 81, 65, 56, 43, 125, 65, 30, 11, 12, 12, 100, 82, 72, 57, 216, 126, 68, 31, 12, 13, 13, 121, 101, 90, 73, 343
Offset: 2

Views

Author

Ralf Stephan, Mar 05 2005

Keywords

Comments

Sums of distinct powers of a. Numbers having only {0,1} in a-ary representation.

Examples

			Array begins:
  2,  3,  4,  5,  6,  7,   8,   9, ...
  3,  4,  9, 10, 12, 13,  27,  28, ...
  4,  5, 16, 17, 20, 21,  64,  65, ...
  5,  6, 25, 26, 30, 31, 125, 126, ...
  6,  7, 36, 37, 42, 43, 216, 217, ...
  7,  8, 49, 50, 56, 57, 343, 344, ...
  8,  9, 64, 65, 72, 73, 512, 513, ...
  9, 10, 81, 82, 90, 91, 729, 730, ...
  ...
		

Crossrefs

Programs

  • Mathematica
    T[, 0] = 0; T[2, n] := n; T[a_, 2] := a;
    T[a_, n_] := T[a, n] = If[EvenQ[n], a T[a, n/2], a T[a, (n-1)/2]+1];
    Table[T[a-n+2, n], {a, 2, 13}, {n, 2, a}] // Flatten (* Jean-François Alcover, Feb 09 2021 *)
  • PARI
    T(a, n) = fromdigits(binary(n), a); \\ Michel Marcus, Aug 19 2022
  • Python
    def T(a, n): return n if n < 2 else (max(a, n) if min(a, n) == 2 else a*T(a, n//2) + n%2)
    print([T(a-n+2, n) for a in range(2, 14) for n in range(2, a+1)]) # Michael S. Branicky, Aug 02 2022
    

Formula

T(a, n) = (1/(a-1))*Sum_{j>=1} floor((n+2^(j-1))/2^j) * ((a-2)*a^(j-1) + 1).
T(a, n) = (1/(a-1))*Sum_{j=1..n} ((a-2)*a^A007814(j) + 1).
G.f. of a-th row: (1/(1-x)) * Sum_{k>=0} a^k*x^2^k/(1+x^2^k).
Recurrence: T(a, 2n) = a*T(a, n), T(a, 2n+1) = a*T(a, n) + 1, T(a, 0) = 0.

A099721 a(n) = n^2*(2*n+1).

Original entry on oeis.org

0, 3, 20, 63, 144, 275, 468, 735, 1088, 1539, 2100, 2783, 3600, 4563, 5684, 6975, 8448, 10115, 11988, 14079, 16400, 18963, 21780, 24863, 28224, 31875, 35828, 40095, 44688, 49619, 54900, 60543, 66560, 72963, 79764, 86975, 94608, 102675, 111188, 120159, 129600
Offset: 0

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Nov 07 2004

Keywords

Comments

For a right triangle with sides of lengths 8*n^3 + 12*n^2 + 8*n + 2, 4*n^4 + 8*n^3 + 4*n^2, and 4*n^4 + 8*n^3 + 12*n^2 + 8*n + 2, dividing the area by the perimeter gives a(n). - J. M. Bergot, Jul 30 2013
This sequence is the difference between the centered icosahedral (or cuboctahedral) numbers (A005902(n)) and the centered octagonal pyramidal numbers (A000447(n+1)). - Peter M. Chema, Jan 09 2016
a(n) is the sum of the integers in the closed interval (n-1)*n to n*(n+1). - J. M. Bergot, Apr 19 2017

Crossrefs

Programs

Formula

G.f.: x*(3 + 8*x + x^2)/(x-1)^4.
a(n) = A024196(n) - A024196(n-1). - Philippe Deléham, May 07 2012
a(n) = ceiling(Sum_{i=n^2-(n-1)..n^2+(n-1)} s(i)), for n > 0 and integer i, where s(i) are the real solutions to x = i + sqrt(x), and the summation range excludes the integer solutions which occur where i is an oblong number (A002378). The fractional portion of the summation converges to 2/3 for large n. If s(i) is replaced with i, then the summation equals n^2*(2*n-1) = A015237. - Richard R. Forberg, Oct 15 2014
a(n) = A005902(n) - A000447(n+1). - Peter M. Chema, Jan 09 2016
From Amiram Eldar, May 17 2022: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/6 + 4*log(2) - 4.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/12 - Pi - 2*log(2) + 4. (End)
From Elmo R. Oliveira, Aug 08 2025: (Start)
E.g.f.: x*(1 + 2*x)*(3 + x)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = A000290(n)*A005408(n). (End)

A120479 Primes of the form k^3 + k^2 + 1.

Original entry on oeis.org

3, 13, 37, 151, 577, 811, 1453, 1873, 12697, 14401, 18253, 27901, 44101, 75853, 87121, 93151, 106033, 151687, 178753, 188443, 242173, 291853, 319057, 333271, 362953, 410701, 643453, 666073, 712891, 787153, 1040503, 1379953, 1742401, 1830733, 1875997, 1968751
Offset: 1

Views

Author

Jonathan Vos Post, Jul 21 2006

Keywords

Comments

Primes in A098547. - Michel Marcus, Jan 21 2015

Examples

			1^3 + 1^2 + 1 = 3 (prime), so 3 is in the sequence.
2^3 + 2^2 + 1 = 13 (prime), so 13 is in the sequence.
3^3 + 3^2 + 1 = 37 (prime), so 37 is in the sequence.
4^3 + 4^2 + 1 = 81 = 3^4, so 81 is not in the sequence.
5^3 + 5^2 + 1 = 151 (prime), so 151 is in the sequence.
		

Crossrefs

Cf. A119863 (corresponding k).

Programs

  • Mathematica
    Select[Table[n^3+n^2+1,{n,200}],PrimeQ] (* Harvey P. Dale, Oct 23 2020 *)
  • PARI
    for(n=1,10^3,if(isprime(p=n^3+n^2+1),print1(p,", "))) \\ Derek Orr, Jan 21 2015

Formula

a(n) = A098547(A119863(n)). - Elmo R. Oliveira, Apr 20 2025

A100119 a(n) = n-th centered n-gonal number.

Original entry on oeis.org

1, 2, 7, 19, 41, 76, 127, 197, 289, 406, 551, 727, 937, 1184, 1471, 1801, 2177, 2602, 3079, 3611, 4201, 4852, 5567, 6349, 7201, 8126, 9127, 10207, 11369, 12616, 13951, 15377, 16897, 18514, 20231, 22051, 23977, 26012, 28159, 30421, 32801, 35302
Offset: 0

Views

Author

Jonathan Vos Post, Dec 26 2004

Keywords

Comments

a(n) is n times the n-th triangular number plus 1. - Thomas M. Green, Nov 16 2009
From Gary W. Adamson, Jul 31 2010: (Start)
Equals (1, 2, 3, 4, ...) convolved with (1, 0, 4, 7, 10, 13, ...).
Example: a(5) = 76 = (6, 5, 4, 3, 2, 1) dot (1, 0, 4, 7, 10, 13) = (6 + 0 + 16 + 21 + 20 + 13). (End)

Examples

			a(2) = 2*3 + 1 = 7, a(3) = 3*6 + 1 = 19, a(4) = 4*10 + 1 = 41. - _Thomas M. Green_, Nov 16 2009
		

Crossrefs

See also A101357 (Cumulative sums of the n-th n-gonal numbers).
A diagonal of A101321.

Programs

Formula

a(n) = 1 + n*(n + n^2)/2 = 1 + (1/2)*n^2 + (1/2) * n^3 = 1 + mean(n^2, n^3). - Joshua Zucker, May 03 2006
Equals A002411(n) + 1. - Olivier Gérard, Jun 20 2007
G.f.: (1 - 2*x + 5*x^2 - x^3) / (x-1)^4. - R. J. Mathar, Apr 04 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 25 2012
a(n) = (A098547(n)+1)/2. - Richard Turk, Jul 18 2017
a(n) = A060354(n+2) - A000290(n+1) = A006003(n+1) - A005563(n) and for n>0 A005920(n) - A068601(n+1). - Bruce J. Nicholson, Jun 23 2018

Extensions

Corrected and extended by Joshua Zucker, May 03 2006

A123111 1+n^2+n^3+n^5+n^7; 10101101 in base n.

Original entry on oeis.org

5, 173, 2467, 17489, 81401, 287965, 840743, 2130497, 4842829, 10101101, 19649675, 36082513, 63122177, 105954269, 171622351, 269488385, 411763733, 614115757, 896355059, 1283208401, 1805182345, 2499522653, 3411274487, 4594448449
Offset: 1

Views

Author

Jonathan Vos Post, Sep 28 2006

Keywords

Comments

4th row, A(4,n), of the infinite array A(k,n) = 1 + SUM[i=1..k]n^prime(i). If we deem prime(0) = 1, the array is A(k,n) = SUM[i=0..k]n^prime(i). The first row is A002522 = 1 + n^2. The second row is A098547 = 1 + n^2 + n^3. Row 4 (the current sequence) is prime for n = 1, 2, 3, 4, 5, 7, 10, 18, 19, 23, 25.

Crossrefs

Programs

  • Maple
    seq(1 + n^2 + n^3 + n^5 + n^7, n=1..100); # Robert Israel, Sep 02 2014
  • Mathematica
    Table[Total[n^Prime[Range[4]]]+1,{n,30}] (* Harvey P. Dale, Jan 01 2014 *)
  • PARI
    Vec(-x*(x^7-9*x^6-127*x^5-1227*x^4-2317*x^3-1223*x^2-133*x-5)/(x-1)^8 + O(x^100)) \\ Colin Barker, Sep 02 2014

Formula

a(n) = 1 + n^2 + n^3 + n^5 + n^7 = 10101101 (base n) = 1 + SUM[i=1..4]n^prime(i).
G.f.: -x*(x^7-9*x^6-127*x^5-1227*x^4-2317*x^3-1223*x^2-133*x-5) / (x-1)^8. - Colin Barker, Sep 02 2014
a(n+7)-7*a(n+6)+21*a(n+5)-35*a(n+4)+35*a(n+3)-21*a(n+2)+7*a(n+1)-a(n)=5040. - Robert Israel, Sep 02 2014

A123650 a(n) = 1 + n^2 + n^3 + n^5.

Original entry on oeis.org

4, 45, 280, 1105, 3276, 8029, 17200, 33345, 59860, 101101, 162504, 250705, 373660, 540765, 762976, 1052929, 1425060, 1895725, 2483320, 3208401, 4093804, 5164765, 6449040, 7977025, 9781876, 11899629, 14369320, 17233105, 20536380, 24327901
Offset: 1

Views

Author

Jonathan Vos Post, Oct 04 2006

Keywords

Comments

3rd row, A(3,n), of the infinite array A(k,n) = 1 + Sum_{i=1..k} n^prime(i). If we deem prime(0) = 1, the array is A(k,n) = Sum_{i=0..k} n^prime(i). The first row is A002522 = 1 + n^2. The second row is A098547 = 1 + n^2 + n^3. The 4th row, A(4,n), is A123111 1 + n^2 + n^3 + n^5 + n^7. 10101101 (base n). A(n,n) is A123113 Main diagonal of prime power sum array. The current sequence, A(3,n), can never be prime because of the polynomial factorization a(n) = 1 + n^2 + n^3 + n^5 = +/- (n+1)*(n^2-n+1)*(n^2+1). Its fewest prime factors are 2 for the semiprime a(1) = 4. We similarly have polynomial factorizations for A123651 = A(7,n) = 1+n^2+n^3+n^5+n^7+n^11+n^13+n^17 and A123652 = A(13,n) = 1+n^2+n^3+n^5+...+n^41.

Crossrefs

Programs

  • Magma
    [1+n^2+n^3+n^5: n in [1..25]]; // G. C. Greubel, Oct 17 2017
  • Mathematica
    Table[1+n^2+n^3+n^5,{n,30}] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{4,45,280,1105,3276,8029},30] (* Harvey P. Dale, Jan 18 2014 *)
  • PARI
    for(n=1,25, print1(1+n^2+n^3+n^5, ", ")) \\ G. C. Greubel, Oct 17 2017
    

Formula

a(n) = 1 + n^2 + n^3 + n^5 = 101101 (base n) = +/- (n+1)*(n^2-n+1)*(n^2+1).
G.f.: x*(4 +21*x +70*x^2 +20*x^3 +6*x^4 -x^5)/(1-x)^6. - Colin Barker, May 25 2012

A123651 a(n) = 1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17.

Original entry on oeis.org

8, 141485, 130914100, 17251189841, 764209065776, 16940083223773, 232729381165100, 2252358161564225, 16679754951397336, 100010100010101101, 505481836542757988, 2218718842990269265, 8650720586711446400
Offset: 1

Views

Author

Jonathan Vos Post, Oct 04 2006

Keywords

Comments

7th row, A(7,n), of the infinite array A(k,n) = 1 + Sum_{i=1..k} n^prime(i). If we deem prime(0) = 1, the array is A(k,n) = Sum_{i=0..k} n^prime(i). The first row is A002522 = 1 + n^2. The second row is A098547 = 1 + n^2 + n^3. The 3rd row, A(3,n), is A123650. The 4th row, A(4,n), is A123111 1 + n^2 + n^3 + n^5 + n^7. 10101101 (base n). A(n,n) is A123113 Main diagonal of prime power sum array. The current sequence, A(7,n), can never be prime, because of the polynomial factorization a(n) = 1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17 = +/- (n^2+1)*(n^15 -n^13 +2n^11 -n^9 +n^7 +n^3 +1). It can be semiprime, as with a(2) and with a(10) = 100010100010101101 = 101 * 990199010001001 and a(14). We similarly have polynomial factorization for A123652 = A(13,n) = 1 +n^2 +n^3 +n^5 +...+ n^41.

Crossrefs

Programs

  • Magma
    [1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17: n in [1..25]]; // G. C. Greubel, Oct 17 2017
  • Mathematica
    Table[Total[n^Prime[Range[7]]]+1,{n,20}] (* Harvey P. Dale, Aug 22 2012 *)
  • PARI
    for(n=1,25, print1(1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17, ", ")) \\ G. C. Greubel, Oct 17 2017
    

Formula

a(n) = 1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17 = 100010100010101101 (base n) = +/- (n^2+1)*(n^15-n^13+2n^11-n^9+n^7+n^3+1).

A123652 a(n) = 1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17 + n^19 + n^23 + n^29 + n^31 + n^37 + n^41.

Original entry on oeis.org

14, 2339155617965, 36923966682271786990, 4854597644377050732053585, 45547499507677574921923909526, 80266855145143309588022024772829, 44586202603279528645530450127574150
Offset: 1

Views

Author

Jonathan Vos Post, Oct 04 2006

Keywords

Comments

13th row, A(13,n), of the infinite array A(k,n) = 1 + Sum_{i=1..k} n^prime(i). If we deem prime(0) = 1, the array is A(k,n) = Sum_{i=0..k} n^prime(i). The first row is A002522 = 1 + n^2. The second row is A098547 = 1 + n^2 + n^3. The 3rd row, A(3,n), is A123650. The 4th row, A(4,n), is A123111 1 +n^2 +n^3 +n^5 +n^7. 10101101 (base n). A(n,n) is A123113 Main diagonal of prime power sum array. The sequence A(13,n) = a(n) can never be prime because of the polynomial factorization. It can be semiprime, as with a(1) = 14 and a(2) = 2339155617965 = 5 * 467831123593 and a(6) and 100010000010100000100010100010100010101101 = 101 * 990198019901980199010000990199010001001. We similarly have polynomial factorization for the 7th row, A123651 = A(7,n) = 1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17 = +/- (n^2+1)*(n^15-n^13+2n^11-n^9+n^7+n^3+1).

Crossrefs

Programs

  • Magma
    [1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17 + n^19 + n^23 + n^29 + n^31 + n^37 + n^41: n in [1..25]]; // G. C. Greubel, Oct 17 2017
  • Mathematica
    Table[1+Total[n^Prime[Range[PrimePi[41]]]],{n,8}] (* Harvey P. Dale, Dec 20 2010 *)
  • PARI
    for(n=1,25, print1(1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17 + n^19 + n^23 + n^29 + n^31 + n^37 + n^41, ", ")) \\ G. C. Greubel, Oct 17 2017
    

Formula

a(n) = 1+n^2+n^3+n^5+n^7+n^11+n^13+n^17+n^19+n^23+n^29+n^31+n^37+n^41 = 100010000010100000100010100010100010101101(base n) = +/-(n^2+1)*(n^39-n^37+2n^35-2n^33+2n^31-n^29+2n^27-2n^25+2n^23-n^21+n^19+n^15-n^13+2n^11-n^9+n^7+n^3+1).

A341907 T(n, k) is the result of replacing 2^e with k^e in the binary expansion of n; square array T(n, k) read by antidiagonals upwards, n, k >= 0.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 2, 2, 1, 0, 1, 1, 3, 3, 1, 0, 0, 2, 4, 4, 4, 1, 0, 1, 2, 5, 9, 5, 5, 1, 0, 0, 3, 6, 10, 16, 6, 6, 1, 0, 1, 1, 7, 12, 17, 25, 7, 7, 1, 0, 0, 2, 8, 13, 20, 26, 36, 8, 8, 1, 0, 1, 2, 9, 27, 21, 30, 37, 49, 9, 9, 1, 0, 0, 3, 10, 28, 64, 31, 42, 50, 64, 10, 10, 1, 0
Offset: 0

Views

Author

Rémy Sigrist, Jun 04 2021

Keywords

Comments

For any n >= 0, the n-th row, k -> T(n, k), corresponds to a polynomial in k with coefficients in {0, 1}.
For any k > 1, the k-th column, n -> T(n, k), corresponds to sums of distinct powers of k.

Examples

			Array T(n, k) begins:
  n\k|  0  1   2   3   4    5    6    7    8    9    10    11    12
  ---+-------------------------------------------------------------
    0|  0  0   0   0   0    0    0    0    0    0     0     0     0
    1|  1  1   1   1   1    1    1    1    1    1     1     1     1
    2|  0  1   2   3   4    5    6    7    8    9    10    11    12
    3|  1  2   3   4   5    6    7    8    9   10    11    12    13
    4|  0  1   4   9  16   25   36   49   64   81   100   121   144
    5|  1  2   5  10  17   26   37   50   65   82   101   122   145
    6|  0  2   6  12  20   30   42   56   72   90   110   132   156
    7|  1  3   7  13  21   31   43   57   73   91   111   133   157
    8|  0  1   8  27  64  125  216  343  512  729  1000  1331  1728
    9|  1  2   9  28  65  126  217  344  513  730  1001  1332  1729
   10|  0  2  10  30  68  130  222  350  520  738  1010  1342  1740
   11|  1  3  11  31  69  131  223  351  521  739  1011  1343  1741
   12|  0  2  12  36  80  150  252  392  576  810  1100  1452  1872
		

Crossrefs

Programs

  • PARI
    T(n,k) = { my (v=0, e); while (n, n-=2^e=valuation(n,2); v+=k^e); v }

Formula

T(n, n) = A104258(n).
T(n, 0) = A000035(n).
T(n, 1) = A000120(n).
T(n, 2) = n.
T(n, 3) = A005836(n).
T(n, 4) = A000695(n).
T(n, 5) = A033042(n).
T(n, 6) = A033043(n).
T(n, 7) = A033044(n).
T(n, 8) = A033045(n).
T(n, 9) = A033046(n).
T(n, 10) = A007088(n).
T(n, 11) = A033047(n).
T(n, 12) = A033048(n).
T(n, 13) = A033049(n).
T(0, k) = 0.
T(1, k) = 1.
T(2, k) = k.
T(3, k) = k + 1.
T(4, k) = k^2.
T(5, k) = k^2 + 1 = A002522(k).
T(6, k) = k^2 + k = A002378(k).
T(7, k) = k^2 + k + 1 = A002061(k).
T(8, k) = k^3.
T(9, k) = k^3 + 1 = A001093(k).
T(10, k) = k^3 + k = A034262(k).
T(11, k) = k^3 + k + 1 = A071568(k).
T(12, k) = k^3 + k^2 = A011379(k).
T(13, k) = k^3 + k^2 + 1 = A098547(k).
T(14, k) = k^3 + k^2 + k = A027444(k).
T(15, k) = k^3 + k^2 + k + 1 = A053698(k).
T(16, k) = k^4 = A000583(k).
T(17, k) = k^4 + 1 = A002523(k).
T(m + n, k) = T(m, k) + T(n, k) when m AND n = 0 (where AND denotes the bitwise AND operator).

A124054 Array(d,n) = number of ordered ways to write n as the sum of d squares less than d, read by rows, through last nonzero value per row.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 3, 1, 3, 6, 3, 0, 3, 3, 0, 0, 1, 1, 4, 6, 4, 5, 12, 12, 4, 6, 16, 18, 12, 8, 16, 24, 12, 1, 12, 18, 12, 6, 4, 12, 12, 0, 0, 6, 4, 4, 0, 0, 4, 0, 0, 0, 0, 1, 1, 5, 10, 10, 10, 21, 30, 20, 15, 35, 50, 40, 30, 45, 70, 60, 30, 55, 100, 80, 56
Offset: 1

Views

Author

Jonathan Vos Post, Nov 03 2006

Keywords

Comments

Rows terminate with last nonzero element. Row length of row n = A098547 n^3+n^2+1. Row 4 = A123999 Number of ordered ways of writing n as a sum of 4 squares of nonnegative numbers less than 4. Row 5 = A123337 Number of ordered ways to write n as the sum of 5 squares less than 5. Column 0 = A000012 The simplest sequence of positive numbers: the all 1's sequence. Column 1 = A000027 The natural numbers. Column 2 = A000217(n-2) = Triangular numbers C(n-1,2) = n(n-1)/2. Column 3 = A000292(n-2) Tetrahedral numbers = C(n,3).

Examples

			A(1,n) = 1 because the unique ordered way to write 1 as the sum of 0 squares less than 0 is the null set {}.
a(2,n) = 1, 2, 1 = Card{0=0^2+0^2}; Card{1=0^2+1^2,1=1^2+0^2}; Card{2=1^2+1^2}.
a(3,n) = 1, 3, 3, 1, 3, 6, 3, 0, 3, 3, 0, 0, 1.
a(4,n) = 1, 4, 6, 4, 5, 12, 12, 4,  6, 16, 18, ... = A123999.
a(5,n) = 1, 5, 10, 10, 10, 21, 30, 20, 15, 35, ... = A123337.
a(6,n) = 1, 6, 15, 20, 21, 36, 61, 60, 45, 72, ...
a(7,n) = 1, 7, 21, 35, 42, 63, 112, 141, 126, 154, ...
a(8,n) = 1, 8, 28, 56, 78, 112, 196, 288, 309, 344, ...
a(9,n) = 1, 9, 36, 84, 135, 198, 336, 540, 675, 766, ...
a(10,n) = 1, 10, 45, 120, 220, 342, 570, 960, 1350, 1640, ...
		

Crossrefs

Programs

  • Mathematica
    cntper[v_] := Length[v]!/Times @@ ((Last /@ Tally[v])!); sqq[d_, n_] := Total[ cntper /@ IntegerPartitions[n, {d}, Range[0, d - 1]^2]]; Flatten[ Table[ sqq[d, #] & /@ Range[0, d (d - 1)^2], {d, 1, 6}]] (* Giovanni Resta, Jun 16 2016 *)

Formula

A(d,n) for fixed d = Row d = Card{(c_1,c_2,...,c_d) such that 0<=c_i

Extensions

Data corrected by Giovanni Resta, Jun 16 2016
Showing 1-10 of 10 results.