A104257
Square array T(a,n) read by antidiagonals: replace 2^i with a^i in binary representation of n, where a,n >= 2.
Original entry on oeis.org
2, 3, 3, 4, 4, 4, 5, 5, 9, 5, 6, 6, 16, 10, 6, 7, 7, 25, 17, 12, 7, 8, 8, 36, 26, 20, 13, 8, 9, 9, 49, 37, 30, 21, 27, 9, 10, 10, 64, 50, 42, 31, 64, 28, 10, 11, 11, 81, 65, 56, 43, 125, 65, 30, 11, 12, 12, 100, 82, 72, 57, 216, 126, 68, 31, 12, 13, 13, 121, 101, 90, 73, 343
Offset: 2
Array begins:
2, 3, 4, 5, 6, 7, 8, 9, ...
3, 4, 9, 10, 12, 13, 27, 28, ...
4, 5, 16, 17, 20, 21, 64, 65, ...
5, 6, 25, 26, 30, 31, 125, 126, ...
6, 7, 36, 37, 42, 43, 216, 217, ...
7, 8, 49, 50, 56, 57, 343, 344, ...
8, 9, 64, 65, 72, 73, 512, 513, ...
9, 10, 81, 82, 90, 91, 729, 730, ...
...
Rows include (essentially)
A005836,
A000695,
A033042,
A033043,
A033044,
A033045,
A033046,
A033047,
A033048,
A033049,
A033050,
A033051,
A033052.
-
T[, 0] = 0; T[2, n] := n; T[a_, 2] := a;
T[a_, n_] := T[a, n] = If[EvenQ[n], a T[a, n/2], a T[a, (n-1)/2]+1];
Table[T[a-n+2, n], {a, 2, 13}, {n, 2, a}] // Flatten (* Jean-François Alcover, Feb 09 2021 *)
-
T(a, n) = fromdigits(binary(n), a); \\ Michel Marcus, Aug 19 2022
-
def T(a, n): return n if n < 2 else (max(a, n) if min(a, n) == 2 else a*T(a, n//2) + n%2)
print([T(a-n+2, n) for a in range(2, 14) for n in range(2, a+1)]) # Michael S. Branicky, Aug 02 2022
A099721
a(n) = n^2*(2*n+1).
Original entry on oeis.org
0, 3, 20, 63, 144, 275, 468, 735, 1088, 1539, 2100, 2783, 3600, 4563, 5684, 6975, 8448, 10115, 11988, 14079, 16400, 18963, 21780, 24863, 28224, 31875, 35828, 40095, 44688, 49619, 54900, 60543, 66560, 72963, 79764, 86975, 94608, 102675, 111188, 120159, 129600
Offset: 0
Douglas Winston (douglas.winston(AT)srupc.com), Nov 07 2004
Cf.
A000578,
A001093,
A011379,
A015237,
A027444,
A033431,
A033562,
A034262,
A053698,
A061317,
A066023,
A071568,
A098547.
-
[n^2*(2*n+1): n in [0..50]]; // Vincenzo Librandi, May 01 2011
-
A099721 := proc(n) n^2*(2*n+1) ; end proc:
seq(A099721(n),n=0..10) ;
-
a[n_]:=2*n^3+n^2; (* Vladimir Joseph Stephan Orlovsky, Dec 21 2008 *)
LinearRecurrence[{4,-6,4,-1},{0,3,20,63},40] (* Harvey P. Dale, Aug 19 2022 *)
-
a(n) = ceil(sum(i=n^2-(n-1), n^2+(n-1), if(!issquare(4*i+1), (2*i+1+sqrt(4*i+1))/2, 0))); \\ Michel Marcus, Nov 14 2014, after Richard R. Forberg
A120479
Primes of the form k^3 + k^2 + 1.
Original entry on oeis.org
3, 13, 37, 151, 577, 811, 1453, 1873, 12697, 14401, 18253, 27901, 44101, 75853, 87121, 93151, 106033, 151687, 178753, 188443, 242173, 291853, 319057, 333271, 362953, 410701, 643453, 666073, 712891, 787153, 1040503, 1379953, 1742401, 1830733, 1875997, 1968751
Offset: 1
1^3 + 1^2 + 1 = 3 (prime), so 3 is in the sequence.
2^3 + 2^2 + 1 = 13 (prime), so 13 is in the sequence.
3^3 + 3^2 + 1 = 37 (prime), so 37 is in the sequence.
4^3 + 4^2 + 1 = 81 = 3^4, so 81 is not in the sequence.
5^3 + 5^2 + 1 = 151 (prime), so 151 is in the sequence.
-
Select[Table[n^3+n^2+1,{n,200}],PrimeQ] (* Harvey P. Dale, Oct 23 2020 *)
-
for(n=1,10^3,if(isprime(p=n^3+n^2+1),print1(p,", "))) \\ Derek Orr, Jan 21 2015
A100119
a(n) = n-th centered n-gonal number.
Original entry on oeis.org
1, 2, 7, 19, 41, 76, 127, 197, 289, 406, 551, 727, 937, 1184, 1471, 1801, 2177, 2602, 3079, 3611, 4201, 4852, 5567, 6349, 7201, 8126, 9127, 10207, 11369, 12616, 13951, 15377, 16897, 18514, 20231, 22051, 23977, 26012, 28159, 30421, 32801, 35302
Offset: 0
a(2) = 2*3 + 1 = 7, a(3) = 3*6 + 1 = 19, a(4) = 4*10 + 1 = 41. - _Thomas M. Green_, Nov 16 2009
See also
A101357 (Cumulative sums of the n-th n-gonal numbers).
-
I:=[1, 2, 7, 19]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 25 2012
-
Table[(n^3+n^2)/2+1,{n,0,6!}] (* Vladimir Joseph Stephan Orlovsky, Mar 06 2010 *)
LinearRecurrence[{4,-6,4,-1},{1,2,7,19},40] (* Vincenzo Librandi, Jun 25 2012 *)
-
a(n) = n^2*(n+1)/2+1; \\ Altug Alkan, Sep 21 2018
A123111
1+n^2+n^3+n^5+n^7; 10101101 in base n.
Original entry on oeis.org
5, 173, 2467, 17489, 81401, 287965, 840743, 2130497, 4842829, 10101101, 19649675, 36082513, 63122177, 105954269, 171622351, 269488385, 411763733, 614115757, 896355059, 1283208401, 1805182345, 2499522653, 3411274487, 4594448449
Offset: 1
-
seq(1 + n^2 + n^3 + n^5 + n^7, n=1..100); # Robert Israel, Sep 02 2014
-
Table[Total[n^Prime[Range[4]]]+1,{n,30}] (* Harvey P. Dale, Jan 01 2014 *)
-
Vec(-x*(x^7-9*x^6-127*x^5-1227*x^4-2317*x^3-1223*x^2-133*x-5)/(x-1)^8 + O(x^100)) \\ Colin Barker, Sep 02 2014
A123650
a(n) = 1 + n^2 + n^3 + n^5.
Original entry on oeis.org
4, 45, 280, 1105, 3276, 8029, 17200, 33345, 59860, 101101, 162504, 250705, 373660, 540765, 762976, 1052929, 1425060, 1895725, 2483320, 3208401, 4093804, 5164765, 6449040, 7977025, 9781876, 11899629, 14369320, 17233105, 20536380, 24327901
Offset: 1
-
[1+n^2+n^3+n^5: n in [1..25]]; // G. C. Greubel, Oct 17 2017
-
Table[1+n^2+n^3+n^5,{n,30}] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{4,45,280,1105,3276,8029},30] (* Harvey P. Dale, Jan 18 2014 *)
-
for(n=1,25, print1(1+n^2+n^3+n^5, ", ")) \\ G. C. Greubel, Oct 17 2017
A123651
a(n) = 1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17.
Original entry on oeis.org
8, 141485, 130914100, 17251189841, 764209065776, 16940083223773, 232729381165100, 2252358161564225, 16679754951397336, 100010100010101101, 505481836542757988, 2218718842990269265, 8650720586711446400
Offset: 1
-
[1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17: n in [1..25]]; // G. C. Greubel, Oct 17 2017
-
Table[Total[n^Prime[Range[7]]]+1,{n,20}] (* Harvey P. Dale, Aug 22 2012 *)
-
for(n=1,25, print1(1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17, ", ")) \\ G. C. Greubel, Oct 17 2017
A123652
a(n) = 1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17 + n^19 + n^23 + n^29 + n^31 + n^37 + n^41.
Original entry on oeis.org
14, 2339155617965, 36923966682271786990, 4854597644377050732053585, 45547499507677574921923909526, 80266855145143309588022024772829, 44586202603279528645530450127574150
Offset: 1
-
[1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17 + n^19 + n^23 + n^29 + n^31 + n^37 + n^41: n in [1..25]]; // G. C. Greubel, Oct 17 2017
-
Table[1+Total[n^Prime[Range[PrimePi[41]]]],{n,8}] (* Harvey P. Dale, Dec 20 2010 *)
-
for(n=1,25, print1(1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17 + n^19 + n^23 + n^29 + n^31 + n^37 + n^41, ", ")) \\ G. C. Greubel, Oct 17 2017
A341907
T(n, k) is the result of replacing 2^e with k^e in the binary expansion of n; square array T(n, k) read by antidiagonals upwards, n, k >= 0.
Original entry on oeis.org
0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 2, 2, 1, 0, 1, 1, 3, 3, 1, 0, 0, 2, 4, 4, 4, 1, 0, 1, 2, 5, 9, 5, 5, 1, 0, 0, 3, 6, 10, 16, 6, 6, 1, 0, 1, 1, 7, 12, 17, 25, 7, 7, 1, 0, 0, 2, 8, 13, 20, 26, 36, 8, 8, 1, 0, 1, 2, 9, 27, 21, 30, 37, 49, 9, 9, 1, 0, 0, 3, 10, 28, 64, 31, 42, 50, 64, 10, 10, 1, 0
Offset: 0
Array T(n, k) begins:
n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12
---+-------------------------------------------------------------
0| 0 0 0 0 0 0 0 0 0 0 0 0 0
1| 1 1 1 1 1 1 1 1 1 1 1 1 1
2| 0 1 2 3 4 5 6 7 8 9 10 11 12
3| 1 2 3 4 5 6 7 8 9 10 11 12 13
4| 0 1 4 9 16 25 36 49 64 81 100 121 144
5| 1 2 5 10 17 26 37 50 65 82 101 122 145
6| 0 2 6 12 20 30 42 56 72 90 110 132 156
7| 1 3 7 13 21 31 43 57 73 91 111 133 157
8| 0 1 8 27 64 125 216 343 512 729 1000 1331 1728
9| 1 2 9 28 65 126 217 344 513 730 1001 1332 1729
10| 0 2 10 30 68 130 222 350 520 738 1010 1342 1740
11| 1 3 11 31 69 131 223 351 521 739 1011 1343 1741
12| 0 2 12 36 80 150 252 392 576 810 1100 1452 1872
See
A342707 for a similar sequence.
Cf.
A000035,
A000120,
A000583,
A000695,
A001093,
A002061,
A002378,
A002522,
A002523,
A005836,
A007088,
A011379,
A027444,
A033042,
A033043,
A033044,
A033045,
A033046,
A033047,
A033048,
A033049,
A034262,
A053698,
A071568,
A098547,
A104258.
-
T(n,k) = { my (v=0, e); while (n, n-=2^e=valuation(n,2); v+=k^e); v }
A124054
Array(d,n) = number of ordered ways to write n as the sum of d squares less than d, read by rows, through last nonzero value per row.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 3, 1, 3, 6, 3, 0, 3, 3, 0, 0, 1, 1, 4, 6, 4, 5, 12, 12, 4, 6, 16, 18, 12, 8, 16, 24, 12, 1, 12, 18, 12, 6, 4, 12, 12, 0, 0, 6, 4, 4, 0, 0, 4, 0, 0, 0, 0, 1, 1, 5, 10, 10, 10, 21, 30, 20, 15, 35, 50, 40, 30, 45, 70, 60, 30, 55, 100, 80, 56
Offset: 1
A(1,n) = 1 because the unique ordered way to write 1 as the sum of 0 squares less than 0 is the null set {}.
a(2,n) = 1, 2, 1 = Card{0=0^2+0^2}; Card{1=0^2+1^2,1=1^2+0^2}; Card{2=1^2+1^2}.
a(3,n) = 1, 3, 3, 1, 3, 6, 3, 0, 3, 3, 0, 0, 1.
a(4,n) = 1, 4, 6, 4, 5, 12, 12, 4, 6, 16, 18, ... = A123999.
a(5,n) = 1, 5, 10, 10, 10, 21, 30, 20, 15, 35, ... = A123337.
a(6,n) = 1, 6, 15, 20, 21, 36, 61, 60, 45, 72, ...
a(7,n) = 1, 7, 21, 35, 42, 63, 112, 141, 126, 154, ...
a(8,n) = 1, 8, 28, 56, 78, 112, 196, 288, 309, 344, ...
a(9,n) = 1, 9, 36, 84, 135, 198, 336, 540, 675, 766, ...
a(10,n) = 1, 10, 45, 120, 220, 342, 570, 960, 1350, 1640, ...
-
cntper[v_] := Length[v]!/Times @@ ((Last /@ Tally[v])!); sqq[d_, n_] := Total[ cntper /@ IntegerPartitions[n, {d}, Range[0, d - 1]^2]]; Flatten[ Table[ sqq[d, #] & /@ Range[0, d (d - 1)^2], {d, 1, 6}]] (* Giovanni Resta, Jun 16 2016 *)
Showing 1-10 of 10 results.
Comments