cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A130218 Partial sums of A100119. Sum of first n of the n-th centered n-gonal numbers.

Original entry on oeis.org

1, 3, 10, 29, 70, 146, 273, 470, 759, 1165, 1716, 2443, 3380, 4564, 6035, 7836, 10013, 12615, 15694, 19305, 23506, 28358, 33925, 40274, 47475, 55601, 64728, 74935, 86304, 98920, 112871, 128248, 145145, 163659, 183890, 205941, 229918, 255930
Offset: 1

Views

Author

Jonathan Vos Post, Aug 04 2007

Keywords

Comments

This is to n-th centered n-gonal numbers (A100119) as A101357 is to n-th n-gonal numbers (A060354). a(2) = 3 and a(4) = 29 are primes. a(39) = 284089 = 13^2 * 41^2.

Examples

			a(41) = 1 + 2 + 7 + 19 + 41 + 76 + 127 + 197 + 289 + 406 + 551 + 727 + 937 + 1184 + 1471 + 1801 + 2177 + 2602 + 3079 + 3611 + 4201 + 4852 + 5567 + 6349 + 7201 + 8126 + 9127 + 10207 + 11369 + 12616 + 13951 + 15377 + 16897 + 18514 + 20231 + 22051 + 23977 + 26012 + 28159 + 30421 + 32801 + 35302 = 382613.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{1,3,10,29,70},40] (* Harvey P. Dale, Jun 02 2018 *)

Formula

a(n) = (n*(26-3*n-2*n^2+3*n^3))/24. G.f.: x*(x^3-5*x^2+2*x-1) / (x-1)^5. - Colin Barker, Apr 29 2013

A292551 Expansion of x*(1 - 2*x + x^2 + 7*x^3 - x^4)/((1 - x)^4*(1 + x)^3).

Original entry on oeis.org

0, 1, -1, 3, 4, 12, 21, 34, 56, 75, 115, 141, 204, 238, 329, 372, 496, 549, 711, 775, 980, 1056, 1309, 1398, 1704, 1807, 2171, 2289, 2716, 2850, 3345, 3496, 4064, 4233, 4879, 5067, 5796, 6004, 6821, 7050, 7960, 8211, 9219, 9493, 10604, 10902, 12121, 12444, 13776, 14125, 15575
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 18 2017

Keywords

Comments

The n-th generalized n-gonal number (for n >= 5).

Crossrefs

Main diagonal of A303301.

Programs

  • GAP
    List([0..50],n->(2*n^3-2*n^2+(-1)^n*(2*n^2-11*n-6)-5*n+6)/16); # Muniru A Asiru, Aug 08 2018
  • Maple
    a:= n-> (m-> m*((n-2)*m-(n-4))/2)(-ceil(n/2)*(-1)^n):
    seq(a(n), n=0..100);  # Alois P. Heinz, Aug 29 2018
  • Mathematica
    CoefficientList[Series[x (1 - 2 x + x^2 + 7 x^3 - x^4)/((1 - x)^4 (1 + x)^3), {x, 0, 50}], x]
    Table[SeriesCoefficient[x (1 + (n - 4) x + x^2)/((1 - x)^3 (1 + x)^2), {x, 0, n}], {n, 0, 50}]
    LinearRecurrence[{1, 3, -3, -3, 3, 1, -1}, {0, 1, -1, 3, 4, 12, 21}, 51]
    Table[(2 n^3 - 2 n^2 + (-1)^n (2 n^2 - 11 n - 6) - 5 n + 6)/16, {n, 0, 50}]
  • PARI
    x='x+O('x^99); concat(0, Vec(x*(1-2*x+x^2+7*x^3-x^4)/((1-x)^4*(1+x)^3))) \\ Altug Alkan, Sep 18 2017
    

Formula

G.f.: x*(1 - 2*x + x^2 + 7*x^3 - x^4)/((1 - x)^4*(1 + x)^3).
a(n) = [x^n] x*(1 + (n - 4)*x + x^2)/((1 - x)^3*(1 + x)^2).
E.g.f.: (1/16)*((-6 + 9*x + 2*x^2)*exp(-x) + (6 - 5*x + 4*x^2 + 2*x^3)*exp(x)).
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7).
a(n) = (2*n^3 - 2*n^2 + (-1)^n*(2*n^2 - 11*n - 6) - 5*n + 6)/16.

A072277 Smallest integer > 1 which is both n-gonal and centered n-gonal.

Original entry on oeis.org

10, 25, 51, 91, 148, 225, 325, 451, 606, 793, 1015, 1275, 1576, 1921, 2313, 2755, 3250, 3801, 4411, 5083, 5820, 6625, 7501, 8451, 9478, 10585, 11775, 13051, 14416, 15873, 17425, 19075, 20826, 22681, 24643, 26715, 28900, 31201, 33621, 36163
Offset: 3

Views

Author

David W. Wilson, Jul 09 2002

Keywords

Comments

a(n) is the (n-1)-th centered n-gonal number. The n-th centered n-gonal number is A100119(n) and the (n+1)-th centered n-gonal number is A158842(n). - Mohammed Yaseen, Jun 06 2021

Examples

			a(4) = 25 is both square and centered square.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{10,25,51,91},50] (* or *) Table[(n^3-n^2+ 2)/2,{n,3,50}] (* Harvey P. Dale, Aug 19 2011 *)

Formula

a(n) = (n^3 - n^2 + 2)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), with a(3)=10, a(4)=25, a(5)=51, a(6)=91. - Harvey P. Dale, Aug 19 2011
G.f.: x^3*(-3*x^3 + 11*x^2 - 15*x + 10)/(x-1)^4. - Harvey P. Dale, Aug 19 2011

A329523 a(n) = n * (binomial(n + 1, 3) + 1).

Original entry on oeis.org

0, 1, 4, 15, 44, 105, 216, 399, 680, 1089, 1660, 2431, 3444, 4745, 6384, 8415, 10896, 13889, 17460, 21679, 26620, 32361, 38984, 46575, 55224, 65025, 76076, 88479, 102340, 117769, 134880, 153791, 174624, 197505, 222564, 249935, 279756, 312169, 347320, 385359, 426440
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 15 2019

Keywords

Comments

The n-th centered n-gonal pyramidal number.

Examples

			Square array begins:
  (0), 1,  2,   3,   4,    5,  ... A001477
   0, (1), 3,   7,  14,   25,  ... A004006
   0,  1, (4), 11,  24,   45,  ... A006527
   0,  1,  5, (15), 34,   65,  ... A006003 (partial sums of A005448)
   0,  1,  6,  19, (44),  85,  ... A005900 (partial sums of A001844)
   0,  1,  7,  23,  54, (105), ... A004068 (partial sums of A005891)
...
This sequence is the main diagonal of the array.
		

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), 142.

Crossrefs

Programs

  • Magma
    [ n*(Binomial(n+1,3)+1):n in [0..40]]; // Marius A. Burtea, Nov 15 2019
    
  • Magma
    R:=PowerSeriesRing(Integers(), 41); [0] cat Coefficients(R!(x*(1-x+5*x^2-x^3)/(1-x)^5)); // Marius A. Burtea, Nov 15 2019
  • Mathematica
    Table[n (Binomial[n + 1, 3] + 1), {n, 0, 40}]
    nmax = 40; CoefficientList[Series[x (1 - x + 5 x^2 - x^3)/(1 - x)^5, {x, 0, nmax}], x]
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 4, 15, 44}, 41]

Formula

G.f.: x * (1 - x + 5*x^2 - x^3) / (1 - x)^5.
E.g.f.: exp(x) * x * (1 + x + x^2 + x^3 / 6).
a(n) = n * (n + 2) * (n^2 - 2*n + 3) / 6.
a(n) = n * (A000292(n-1) + 1).
a(n) = n + 2 * Sum_{k=1..n} A000330(k-1).
a(n) + a(-n) = 4 * A002415(n).

A301972 a(n) = n*(n^2 - 2*n + 4)*binomial(2*n,n)/((n + 1)*(n + 2)).

Original entry on oeis.org

0, 1, 4, 21, 112, 570, 2772, 13013, 59488, 266526, 1175720, 5123426, 22108704, 94645460, 402503220, 1702300725, 7165821120, 30043474230, 125523450360, 522857438070, 2172127120800, 9002522512620, 37233403401480, 153704429299746, 633442159732032, 2606543487445100, 10710790748646352, 43957192722175908
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 29 2018

Keywords

Comments

For n > 2, a(n) is the n-th term of the main diagonal of iterated partial sums array of n-gonal numbers (in other words, a(n) is the n-th (n+2)-dimensional n-gonal number, see also example).

Examples

			For n = 5 we have:
----------------------------
0   1    2    3     4    [5]
----------------------------
0,  1,   5,  12,   22,   35,  ... A000326 (pentagonal numbers)
0,  1,   6,  18,   40,   75,  ... A002411 (pentagonal pyramidal numbers)
0,  1,   7,  25,   65,  140,  ... A001296 (4-dimensional pyramidal numbers)
0,  1,   8,  33,   98,  238,  ... A051836 (partial sums of A001296)
0,  1,   9,  42,  140,  378,  ... A051923 (partial sums of A051836)
0,  1,  10,  52,  192, [570], ... A050494 (partial sums of A051923)
----------------------------
therefore a(5) = 570.
		

Crossrefs

Programs

  • Mathematica
    Table[n (n^2 - 2 n + 4) Binomial[2 n, n]/((n + 1) (n + 2)), {n, 0, 27}]
    nmax = 27; CoefficientList[Series[(-4 + 31 x - 66 x^2 + 28 x^3 + (4 - 7 x) (1 - 4 x)^(3/2))/(2 x^2 (1 - 4 x)^(3/2)), {x, 0, nmax}], x]
    nmax = 27; CoefficientList[Series[Exp[2 x] (4 - x + 2 x^2) BesselI[1, 2 x]/x - 2 Exp[2 x] (2 - x) BesselI[0, 2 x], {x, 0, nmax}], x] Range[0, nmax]!
    Table[SeriesCoefficient[x (1 - 3 x + n x)/(1 - x)^(n + 3), {x, 0, n}], {n, 0, 27}]

Formula

O.g.f.: (-4 + 31*x - 66*x^2 + 28*x^3 + (4 - 7*x)*(1 - 4*x)^(3/2))/(2*x^2*(1 - 4*x)^(3/2)).
E.g.f.: exp(2*x)*(4 - x + 2*x^2)*BesselI(1,2*x)/x - 2*exp(2*x)*(2 - x)*BesselI(0,2*x).
a(n) = [x^n] x*(1 - 3*x + n*x)/(1 - x)^(n+3).
a(n) ~ 4^n*sqrt(n)/sqrt(Pi).
D-finite with recurrence: -(n+2)*(961*n-3215)*a(n) +4*(2081*n^2-4414*n-4668)*a(n-1) -28*(320*n-389)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Jan 27 2020
Showing 1-5 of 5 results.