A130218
Partial sums of A100119. Sum of first n of the n-th centered n-gonal numbers.
Original entry on oeis.org
1, 3, 10, 29, 70, 146, 273, 470, 759, 1165, 1716, 2443, 3380, 4564, 6035, 7836, 10013, 12615, 15694, 19305, 23506, 28358, 33925, 40274, 47475, 55601, 64728, 74935, 86304, 98920, 112871, 128248, 145145, 163659, 183890, 205941, 229918, 255930
Offset: 1
a(41) = 1 + 2 + 7 + 19 + 41 + 76 + 127 + 197 + 289 + 406 + 551 + 727 + 937 + 1184 + 1471 + 1801 + 2177 + 2602 + 3079 + 3611 + 4201 + 4852 + 5567 + 6349 + 7201 + 8126 + 9127 + 10207 + 11369 + 12616 + 13951 + 15377 + 16897 + 18514 + 20231 + 22051 + 23977 + 26012 + 28159 + 30421 + 32801 + 35302 = 382613.
-
LinearRecurrence[{5,-10,10,-5,1},{1,3,10,29,70},40] (* Harvey P. Dale, Jun 02 2018 *)
A292551
Expansion of x*(1 - 2*x + x^2 + 7*x^3 - x^4)/((1 - x)^4*(1 + x)^3).
Original entry on oeis.org
0, 1, -1, 3, 4, 12, 21, 34, 56, 75, 115, 141, 204, 238, 329, 372, 496, 549, 711, 775, 980, 1056, 1309, 1398, 1704, 1807, 2171, 2289, 2716, 2850, 3345, 3496, 4064, 4233, 4879, 5067, 5796, 6004, 6821, 7050, 7960, 8211, 9219, 9493, 10604, 10902, 12121, 12444, 13776, 14125, 15575
Offset: 0
-
List([0..50],n->(2*n^3-2*n^2+(-1)^n*(2*n^2-11*n-6)-5*n+6)/16); # Muniru A Asiru, Aug 08 2018
-
a:= n-> (m-> m*((n-2)*m-(n-4))/2)(-ceil(n/2)*(-1)^n):
seq(a(n), n=0..100); # Alois P. Heinz, Aug 29 2018
-
CoefficientList[Series[x (1 - 2 x + x^2 + 7 x^3 - x^4)/((1 - x)^4 (1 + x)^3), {x, 0, 50}], x]
Table[SeriesCoefficient[x (1 + (n - 4) x + x^2)/((1 - x)^3 (1 + x)^2), {x, 0, n}], {n, 0, 50}]
LinearRecurrence[{1, 3, -3, -3, 3, 1, -1}, {0, 1, -1, 3, 4, 12, 21}, 51]
Table[(2 n^3 - 2 n^2 + (-1)^n (2 n^2 - 11 n - 6) - 5 n + 6)/16, {n, 0, 50}]
-
x='x+O('x^99); concat(0, Vec(x*(1-2*x+x^2+7*x^3-x^4)/((1-x)^4*(1+x)^3))) \\ Altug Alkan, Sep 18 2017
A072277
Smallest integer > 1 which is both n-gonal and centered n-gonal.
Original entry on oeis.org
10, 25, 51, 91, 148, 225, 325, 451, 606, 793, 1015, 1275, 1576, 1921, 2313, 2755, 3250, 3801, 4411, 5083, 5820, 6625, 7501, 8451, 9478, 10585, 11775, 13051, 14416, 15873, 17425, 19075, 20826, 22681, 24643, 26715, 28900, 31201, 33621, 36163
Offset: 3
a(4) = 25 is both square and centered square.
-
LinearRecurrence[{4,-6,4,-1},{10,25,51,91},50] (* or *) Table[(n^3-n^2+ 2)/2,{n,3,50}] (* Harvey P. Dale, Aug 19 2011 *)
A329523
a(n) = n * (binomial(n + 1, 3) + 1).
Original entry on oeis.org
0, 1, 4, 15, 44, 105, 216, 399, 680, 1089, 1660, 2431, 3444, 4745, 6384, 8415, 10896, 13889, 17460, 21679, 26620, 32361, 38984, 46575, 55224, 65025, 76076, 88479, 102340, 117769, 134880, 153791, 174624, 197505, 222564, 249935, 279756, 312169, 347320, 385359, 426440
Offset: 0
Square array begins:
(0), 1, 2, 3, 4, 5, ... A001477
0, (1), 3, 7, 14, 25, ... A004006
0, 1, (4), 11, 24, 45, ... A006527
0, 1, 5, (15), 34, 65, ... A006003 (partial sums of A005448)
0, 1, 6, 19, (44), 85, ... A005900 (partial sums of A001844)
0, 1, 7, 23, 54, (105), ... A004068 (partial sums of A005891)
...
This sequence is the main diagonal of the array.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), 142.
Cf.
A000292,
A000330,
A002415,
A002417,
A006000,
A006484,
A008911,
A050407,
A060354,
A100119,
A188475 (first differences).
-
[ n*(Binomial(n+1,3)+1):n in [0..40]]; // Marius A. Burtea, Nov 15 2019
-
R:=PowerSeriesRing(Integers(), 41); [0] cat Coefficients(R!(x*(1-x+5*x^2-x^3)/(1-x)^5)); // Marius A. Burtea, Nov 15 2019
-
Table[n (Binomial[n + 1, 3] + 1), {n, 0, 40}]
nmax = 40; CoefficientList[Series[x (1 - x + 5 x^2 - x^3)/(1 - x)^5, {x, 0, nmax}], x]
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 4, 15, 44}, 41]
A301972
a(n) = n*(n^2 - 2*n + 4)*binomial(2*n,n)/((n + 1)*(n + 2)).
Original entry on oeis.org
0, 1, 4, 21, 112, 570, 2772, 13013, 59488, 266526, 1175720, 5123426, 22108704, 94645460, 402503220, 1702300725, 7165821120, 30043474230, 125523450360, 522857438070, 2172127120800, 9002522512620, 37233403401480, 153704429299746, 633442159732032, 2606543487445100, 10710790748646352, 43957192722175908
Offset: 0
For n = 5 we have:
----------------------------
0 1 2 3 4 [5]
----------------------------
0, 1, 5, 12, 22, 35, ... A000326 (pentagonal numbers)
0, 1, 6, 18, 40, 75, ... A002411 (pentagonal pyramidal numbers)
0, 1, 7, 25, 65, 140, ... A001296 (4-dimensional pyramidal numbers)
0, 1, 8, 33, 98, 238, ... A051836 (partial sums of A001296)
0, 1, 9, 42, 140, 378, ... A051923 (partial sums of A051836)
0, 1, 10, 52, 192, [570], ... A050494 (partial sums of A051923)
----------------------------
therefore a(5) = 570.
Cf.
A000984,
A002457,
A006484,
A057145,
A060354,
A080851,
A080852,
A100119,
A180266,
A275490,
A292551.
-
Table[n (n^2 - 2 n + 4) Binomial[2 n, n]/((n + 1) (n + 2)), {n, 0, 27}]
nmax = 27; CoefficientList[Series[(-4 + 31 x - 66 x^2 + 28 x^3 + (4 - 7 x) (1 - 4 x)^(3/2))/(2 x^2 (1 - 4 x)^(3/2)), {x, 0, nmax}], x]
nmax = 27; CoefficientList[Series[Exp[2 x] (4 - x + 2 x^2) BesselI[1, 2 x]/x - 2 Exp[2 x] (2 - x) BesselI[0, 2 x], {x, 0, nmax}], x] Range[0, nmax]!
Table[SeriesCoefficient[x (1 - 3 x + n x)/(1 - x)^(n + 3), {x, 0, n}], {n, 0, 27}]
Showing 1-5 of 5 results.
Comments