A229080 Primes of the form T(k) + S(k) + 1 where T(k) is the k-th triangular number and S(k) is the k-th square number.
3, 41, 101, 127, 223, 443, 673, 877, 1277, 1553, 2543, 2927, 3061, 4241, 4733, 4903, 5431, 6971, 7177, 8933, 9883, 10627, 11927, 12743, 13873, 17551, 19211, 20593, 21661, 26203, 31177, 33377, 36583, 40427, 51431, 58313, 60101, 60703, 67523, 68161, 75377, 81551
Offset: 1
Keywords
Examples
T(8) + S(8) + 1 = 8*(8+1)/2 + 8^2 + 1 = 101, which is prime, so 101 is a term. T(9) + S(9) + 1 = 9*(9+1)/2 + 9^2 + 1 = 127, which is prime, so 127 is a term.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..10000
Programs
-
Maple
KD:= proc() local a,b,d; a:= (1/2)*x*(x+1); b:=x^2; d:=a+b+1; if isprime(d) then RETURN(d): fi; end: seq(KD(),x=1..500);
Comments