cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A229157 Primes of the form T(n) + C(n) - 1 where T(n) and C(n) are n-th triangular and cube numbers.

Original entry on oeis.org

73, 139, 547, 773, 2287, 4231, 8209, 9491, 36497, 111767, 118873, 177211, 217829, 316777, 391717, 596273, 889391, 1005049, 1035451, 1163189, 1265597, 1301023, 1449337, 1735259, 2105407, 2524771, 3319123, 4755827, 5467351, 6246523, 6348829, 6662437, 8636239, 9151273
Offset: 1

Views

Author

K. D. Bajpai, Sep 15 2013

Keywords

Comments

Also primes of the form (2*n^3 + n^2 + n - 2)/2.

Examples

			a(3)=547: T(8)+C(8)-1 = (1/2)*8*(8+1)+8^3-1 = 547 which is prime.
a(4)=773: T(9)+C(9)-1 = (1/2)*9*(9+1)+9^3-1 = 773 which is prime.
		

Crossrefs

Programs

  • Maple
    KD:= proc() local a,b,d; a:= (1/2)*n*(n+1);b:=n^3; d:=a+b-1; if isprime(d) then   RETURN(d): fi;end:seq(KD(),n=1..500);

A228908 Primes of the form T(n) + S(n) + C(n) + 1 where T(n), S(n) and C(n) are the n-th triangular, square and cube numbers.

Original entry on oeis.org

43, 421, 613, 1951, 7411, 12973, 23143, 31249, 48619, 114073, 210631, 256033, 321403, 365509, 381061, 502441, 521641, 669901, 766039, 791431, 1015051, 1108693, 1242271, 1929751, 2121793, 2773471, 3759991, 3832999, 4057681, 5498329, 7133281, 7472011, 7587259
Offset: 1

Views

Author

K. D. Bajpai, Sep 14 2013

Keywords

Comments

Also primes of the form n^3 + 3/2*n^2 + 1/2*n + 1.

Examples

			a(3) = 613: T(8)+S(8)+C(8)+1 = 1/2*8*(8+1)+8^2+8^3+1 = 613 which is prime.
a(4) = 1951: T(12)+S(12)+C(12)+1 = 1/2*12*(12+1)+12^2+12^3+1 = 1951 which is prime.
		

Crossrefs

Programs

  • Maple
    KD:= proc() local a,b,c,d; a:= (1/2)*n*(n+1); b:=n^2; c:=n^3; d:=a+b+c+1; if isprime(d) then   RETURN(d): fi; end:seq(KD(),n=1..500);
  • PARI
    select(isprime, vector(100,n,n^3+3/2*n^2+n/2+1)) \\ Charles R Greathouse IV, Sep 15 2013

A229960 Primes of the form n^3 - T(n) - 1 where T(n) is the n-th triangular number.

Original entry on oeis.org

53, 109, 683, 4759, 7789, 9029, 13523, 15299, 45989, 63179, 68059, 90089, 116423, 174019, 225089, 370619, 610469, 700963, 994949, 1025149, 1119403, 1398599, 1594709, 1898873, 2291189, 2561899, 2734129, 2975543, 3038039, 3296773, 3784169, 3857489, 5913269, 6212483
Offset: 1

Views

Author

K. D. Bajpai, Oct 04 2013

Keywords

Comments

Also primes of the form (2*n^3 - n^2 - n - 2)/2.

Examples

			a(2) = 109 since 5^3 - T(5) - 1 = 125 - 15 - 1 = 109, which is prime.
a(6) = 9029 since 21^3 - T(21) - 1 = 9261 - 231 - 1 = 9029 which is prime.
		

Crossrefs

Programs

  • Maple
    KD:= proc() local a,b,d; a:= n^3;b:=(1/2)*n*(n+1); d:=a-b-1; if isprime(d) then   RETURN(d): fi;end: seq(KD(),n=1..500);
  • Mathematica
    Select[Table[(n^3) - (n/2*(n + 1)) - 1, {n, 200}], PrimeQ]
Showing 1-3 of 3 results.