A324403
a(n) = Product_{i=1..n, j=1..n} (i^2 + j^2).
Original entry on oeis.org
1, 2, 400, 121680000, 281324160000000000, 15539794609114833408000000000000, 49933566483104048708063697937367040000000000000000, 19323883089768863178599626514889213871887405416448000000000000000000000000
Offset: 0
-
a:= n-> mul(mul(i^2+j^2, i=1..n), j=1..n):
seq(a(n), n=0..7); # Alois P. Heinz, Jun 24 2023
-
Table[Product[i^2+j^2, {i, 1, n}, {j, 1, n}], {n, 1, 10}]
-
a(n) = prod(i=1, n, prod(j=1, n, i^2+j^2)); \\ Michel Marcus, Feb 27 2019
-
from math import prod, factorial
def A324403(n): return (prod(i**2+j**2 for i in range(1,n) for j in range(i+1,n+1))*factorial(n))**2<Chai Wah Wu, Nov 22 2023
A009963
Triangle of numbers n!(n-1)!...(n-k+1)!/(1!2!...k!).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 24, 72, 24, 1, 1, 120, 1440, 1440, 120, 1, 1, 720, 43200, 172800, 43200, 720, 1, 1, 5040, 1814400, 36288000, 36288000, 1814400, 5040, 1, 1, 40320, 101606400, 12192768000, 60963840000, 12192768000, 101606400, 40320, 1
Offset: 0
Rows start:
1;
1, 1;
1, 2, 1;
1, 6, 6, 1;
1, 24, 72, 24, 1;
1, 120, 1440, 1440, 120, 1; etc.
-
A009963:= func< n,k | (1/Factorial(n+1))*(&*[ Factorial(n-j+1)/Factorial(j): j in [0..k]]) >;
[A009963(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 04 2022
-
(* First program *)
row[n_]:= Table[Product[i+j, {i,1,n-k}, {j,1,k}], {k,0,n}];
Array[row, 9, 0] // Flatten (* Jean-François Alcover, Jun 01 2019, after Peter Luschny *)
(* Second program *)
T[n_, k_]:= BarnesG[n+2]/(BarnesG[k+2]*BarnesG[n-k+2]);
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 04 2022 *)
-
def A009963_row(n):
return [mul(mul(i+j for j in (1..k)) for i in (1..n-k)) for k in (0..n)]
for n in (0..7): A009963_row(n) # Peter Luschny, Nov 26 2012
-
def triangle_to_n_rows(n): #changing n will give you the triangle to row n.
N=[[1]+n*[0]]
for i in [1..n]:
N.append([])
for j in [0..n]:
if i>=j:
N[i].append(factorial(i-j)*binomial(i-1,j-1)*N[i-1][j-1]+factorial(j)*binomial(i-1,j)*N[i-1][j])
else:
N[i].append(0)
return [[N[i][j] for j in [0..i]] for i in [0..n]]
# Tom Edgar, Feb 13 2014
A039622
Number of n X n Young tableaux.
Original entry on oeis.org
1, 1, 2, 42, 24024, 701149020, 1671643033734960, 475073684264389879228560, 22081374992701950398847674830857600, 220381378415074546123953914908618547085974856000, 599868742615440724911356453304513631101279740967209774643120000
Offset: 0
Using the hook length formula, a(4) = (16)!/(7*6^2*5^3*4^4*3^3*2^2) = 24024.
- M. du Sautoy, The Music of the Primes, Fourth Estate / HarperCollins, 2003; see p. 284.
- Alois P. Heinz, Table of n, a(n) for n = 0..30
- P. Aluffi, Degrees of projections of rank loci, arXiv:1408.1702 [math.AG], 2014. ["After compiling the results of many explicit computations, we noticed that many of the numbers d_{n,r,S} appear in the existing literature in contexts far removed from the enumerative geometry of rank conditions; we owe this surprising (to us) observation to perusal of [Slo14]."]
- Joerg Arndt, The a(3)=42 3 X 3 Young tableaux
- J. B. Conrey, The Riemann Hypothesis, Notices Amer. Math. Soc., 50 (No. 3, March 2003), 341-353. See p. 349.
- J. B. Conrey, Review of H. Iwaniec, "Lectures on the Riemann Zeta Function" (AMS, 2014), Bull. Amer. Math. Soc., 53 (No. 3, 2016), 507-512.
- P.-O. Dehaye, Combinatorics of the lower order terms in the moment conjectures: the Riemann zeta function, arXiv preprint arXiv:1201.4478 [math.NT], 2012.
- J. S. Frame, G. de B. Robinson and R. M. Thrall, The hook graphs of a symmetric group, Canad. J. Math. 6 (1954), pp. 316-324.
- Curtis Greene and Brady Haran, Shapes and Hook Numbers, Numberphile video (2016)
- Curtis Greene and Brady Haran, Shapes and Hook Numbers (extra footage) (2016)
- Zachary Hamaker and Eric Marberg, Atoms for signed permutations, arXiv:1802.09805 [math.CO], 2018.
- Alejandro H. Morales, I. Pak, and G. Panova, Why is pi < 2 phi?, Preprint, 2016; The American Mathematical Monthly, Volume 125, 2018 - Issue 8.
- Alan H. Rapoport (proposer), Solution to Problem 639: A Square Young Tableau, College Mathematics Journal, Vol. 30 (1999), no. 5, pp. 410-411.
- Index entries for sequences related to Young tableaux.
-
A039622:= func< n | n eq 0 select 1 else Factorial(n^2)*(&*[Factorial(j)/Factorial(n+j): j in [0..n-1]]) >;
[A039622(n): n in [0..12]]; // G. C. Greubel, Apr 21 2021
-
a:= n-> (n^2)! *mul(k!/(n+k)!, k=0..n-1):
seq(a(n), n=0..12); # Alois P. Heinz, Apr 10 2012
-
a[n_]:= (n^2)!*Product[ k!/(n+k)!, {k, 0, n-1}]; Table[ a[n], {n, 0, 12}] (* Jean-François Alcover, Dec 06 2011, after Pari *)
-
a(n)=(n^2)!*prod(k=0,n-1,k!/(n+k)!)
-
def A039622(n): return factorial(n^2)*product( factorial(j)/factorial(n+j) for j in (0..n-1))
[A039622(n) for n in (0..12)] # G. C. Greubel, Apr 21 2021
A324437
a(n) = Product_{i=1..n, j=1..n} (i^4 + j^4).
Original entry on oeis.org
1, 2, 18496, 189567553208832, 53863903330477722171391434817536, 4194051697335929481600368256016484482740174637152337920000, 530545265060440849231458462212366841894726534233233018777709463062563850450708386692464640000
Offset: 0
-
a:= n-> mul(mul(i^4+j^4, i=1..n), j=1..n):
seq(a(n), n=0..7); # Alois P. Heinz, Jun 24 2023
-
Table[Product[i^4 + j^4, {i, 1, n}, {j, 1, n}], {n, 1, 6}]
-
from math import prod, factorial
def A324437(n): return (prod(i**4+j**4 for i in range(1,n) for j in range(i+1,n+1))*factorial(n)**2)**2<Chai Wah Wu, Nov 26 2023
A324426
a(n) = Product_{i=1..n, j=1..n} (i^3 + j^3).
Original entry on oeis.org
1, 2, 2592, 134425267200, 3120795915109442519040000, 180825857777547616919759624941086965760000000, 99356698720512072045648926659510730227553351200000695922065408000000000
Offset: 0
-
a:= n-> mul(mul(i^3+j^3, i=1..n), j=1..n):
seq(a(n), n=0..7); # Alois P. Heinz, Jun 24 2023
-
Table[Product[i^3+j^3, {i, 1, n}, {j, 1, n}], {n, 1, 10}]
-
a(n) = prod(i=1, n, prod(j=1, n, i^3+j^3)); \\ Michel Marcus, Feb 27 2019
-
from math import prod, factorial
def A324426(n): return prod(i**3+j**3 for i in range(1,n) for j in range(i+1,n+1))**2*factorial(n)**3<Chai Wah Wu, Nov 26 2023
A367543
a(n) = Product_{i=1..n, j=1..n} (i^2 - i*j + j^2).
Original entry on oeis.org
1, 36, 777924, 51190934086656, 32435802373365731229926400, 483207398728525904876601066508152707481600, 350969035472356907726779584093506665415605824531908346799718400
Offset: 1
-
Table[Product[Product[(i^2 - i*j + j^2), {i, 1, n}], {j, 1, n}], {n, 1, 10}]
-
from math import prod, factorial
def A367543(n): return (prod(i*(i-j)+j**2 for i in range(1,n) for j in range(i+1,n+1))*factorial(n))**2 # Chai Wah Wu, Nov 22 2023
A306594
a(n) = Product_{i=1..n, j=1..n, k=1..n} (i + j + k).
Original entry on oeis.org
1, 3, 144000, 455282248974336000000, 9608917807566747651759509633033255126040576000000000000
Offset: 0
-
a:= n-> mul(mul(mul(i+j+k, i=1..n), j=1..n), k=1..n):
seq(a(n), n=0..5); # Alois P. Heinz, Jun 24 2023
-
Table[Product[i+j+k, {i, 1, n}, {j, 1, n}, {k, 1, n}], {n, 1, 6}]
Table[Product[k^(3*(n - k + 1) (n - k + 2)/2), {k, 1, n}] * Product[k^((3*n - k + 1) (3*n - k + 2)/2), {k, 1, 3*n}] / Product[k^(3*(2*n - k + 1) (2*n - k + 2)/2), {k, 1, 2*n}], {n, 1, 6}]
Clear[a]; a[n_] := a[n] = If[n == 1, 3, 3*n*a[n-1] * BarnesG[2+n]^3 * BarnesG[2+3*n]^3 * Gamma[1+2*n]^3 / (BarnesG[2+2*n]^6 * Gamma[1+3*n]^3)]; Table[a[n], {n, 1, 6}] (* Vaclav Kotesovec, Mar 28 2019 *)
A306760
a(n) = Product_{i=1..n, j=1..n} (i*j + 1).
Original entry on oeis.org
1, 2, 90, 705600, 4105057320000, 52487876090562232320000, 3487017405172854771910634342400000000, 2448893405298238642974553493547144534294528000000000000, 33257039167768610289435138215602132823918399655132218973388800000000000000000
Offset: 0
-
a:= n-> mul(mul(i*j+1, i=1..n), j=1..n):
seq(a(n), n=0..9); # Alois P. Heinz, Jun 24 2023
-
Table[Product[i*j + 1, {i, 1, n}, {j, 1, n}], {n, 1, 10}]
Table[n!^(2*n) * Product[Binomial[n + 1/j, n], {j, 1, n}], {n, 1, 10}]
A324425
a(n) = Product_{i=1..n, j=1..n, k=1..n} (i^2 + j^2 + k^2).
Original entry on oeis.org
1, 3, 5668704, 550388591715704109656479285248, 152455602303300418998634460043817052571893573096619261814850281699755319515987050496
Offset: 0
-
a:= n-> mul(mul(mul(i^2+j^2+k^2, i=1..n), j=1..n), k=1..n):
seq(a(n), n=0..5); # Alois P. Heinz, Jun 24 2023
-
Table[Product[i^2+j^2+k^2, {i, 1, n}, {j, 1, n}, {k, 1, n}], {n, 1, 6}]
Clear[a]; a[n_] := a[n] = If[n == 1, 3, a[n-1] * Product[k^2 + j^2 + n^2, {j, 1, n}, {k, 1, n}]^3 * (3*n^2) / (Product[k^2 + 2*n^2, {k, 1, n}]^3)]; Table[a[n], {n, 1, 6}] (* Vaclav Kotesovec, Mar 27 2019 *)
A324438
a(n) = Product_{i=1..n, j=1..n} (i^5 + j^5).
Original entry on oeis.org
1, 2, 139392, 305013568273920000, 1174837791623127613548781790822400000000, 139642003782073074626249921818187528362524804267528306032640000000000000
Offset: 0
-
a:= n-> mul(mul(i^5 + j^5, i=1..n), j=1..n):
seq(a(n), n=0..5); # Alois P. Heinz, Nov 26 2023
-
Table[Product[i^5 + j^5, {i, 1, n}, {j, 1, n}], {n, 1, 6}]
-
from math import prod, factorial
def A324438(n): return prod(i**5+j**5 for i in range(1,n) for j in range(i+1,n+1))**2*factorial(n)**5<Chai Wah Wu, Nov 26 2023
Showing 1-10 of 35 results.
Comments