cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A060854 Array T(m,n) read by antidiagonals: T(m,n) (m >= 1, n >= 1) = number of ways to arrange the numbers 1,2,...,m*n in an m X n matrix so that each row and each column is increasing.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 5, 1, 1, 14, 42, 14, 1, 1, 42, 462, 462, 42, 1, 1, 132, 6006, 24024, 6006, 132, 1, 1, 429, 87516, 1662804, 1662804, 87516, 429, 1, 1, 1430, 1385670, 140229804, 701149020, 140229804, 1385670, 1430, 1, 1, 4862, 23371634, 13672405890, 396499770810, 396499770810, 13672405890, 23371634, 4862, 1
Offset: 1

Views

Author

R. H. Hardin, May 03 2001

Keywords

Comments

Multidimensional Catalan numbers; a special case of the "hook-number formula".
Number of paths from (0,0,...,0) to (n,n,...,n) in m dimensions, all coordinates increasing: if (x_1,x_2,...,x_m) is on the path, then x_1 <= x_2 <= ... <= x_m. Number of ways to label an n by m array with all the values 1..n*m such that each row and column is strictly increasing. Number of rectangular Young Tableaux. Number of linear extensions of the n X m lattice (the divisor lattice of a number having exactly two prime divisors). - Mitch Harris, Dec 27 2005
Given m*n lines in a {(m + 1)(n - 1)}-dimensional space, T(m, n) is the number of {n*(m-1)-1}-dimensional spaces cutting these lines in points (see Fontanari and Castelnuovo). - Stefano Spezia, Jun 19 2022

Examples

			Array begins:
  1,   1,     1,         1,            1,                1, ...
  1,   2,     5,        14,           42,              132, ...
  1,   5,    42,       462,         6006,            87516, ...
  1,  14,   462,     24024,      1662804,        140229804, ...
  1,  42,  6006,   1662804,    701149020,     396499770810, ...
  1, 132, 87516, 140229804, 396499770810, 1671643033734960, ...
		

References

  • Guido Castelnuovo, Numero degli spazi che segano più rette in uno spazio ad n dimensioni, Rendiconti della R. Accademia dei Lincei, s. IV, vol. V, 4 agosto 1889. In Guido Castelnuovo, Memorie scelte, Zanichelli, Bologna 1937, pp. 55-64 (in Italian).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 7.23.19(b).

Crossrefs

Rows give A000108 (Catalan numbers), A005789, A005790, A005791, A321975, A321976, A321977, A321978.
Diagonals give A039622, A060855, A060856.
Cf. A227578. - Alois P. Heinz, Jul 18 2013
Cf. A321716.

Programs

  • Maple
    T:= (m, n)-> (m*n)! * mul(i!/(m+i)!, i=0..n-1):
    seq(seq(T(n, 1+d-n), n=1..d), d=1..10);
  • Mathematica
    maxm = 10; t[m_, n_] := Product[k!, {k, 0, n - 1}]*(m*n)! / Product[k!, {k, m, m + n - 1}]; Flatten[ Table[t[m + 1 - n, n], {m, 1, maxm}, {n, 1, m}]] (* Jean-François Alcover, Sep 21 2011 *)
    Table[ BarnesG[n+1]*(n*(m-n+1))!*BarnesG[m-n+2] / BarnesG[m+2], {m, 1, 10}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jan 30 2016 *)
  • PARI
    {A(i, j) = if( i<0 || j<0, 0, (i*j)! / prod(k=1, i+j-1, k^vecmin([k, i, j, i+j-k])))}; /* Michael Somos, Jan 28 2004 */

Formula

T(m, n) = 0!*1!*..*(n-1)! *(m*n)! / ( m!*(m+1)!*..*(m+n-1)! ).
T(m, n) = A000142(m*n)*A000178(m-1)*A000178(n-1)/A000178(m+n-1) = A000142(A004247(m, n)) * A007318(m+n, n)/A009963(m+n, n). - Henry Bottomley, May 22 2002

Extensions

More terms from Frank Ellermann, May 21 2001

A034841 a(n) = (n^2)! / (n!)^n.

Original entry on oeis.org

1, 1, 6, 1680, 63063000, 623360743125120, 2670177736637149247308800, 7363615666157189603982585462030336000, 18165723931630806756964027928179555634194028454000000, 53130688706387569792052442448845648519471103327391407016237760000000000
Offset: 0

Views

Author

Keywords

Comments

The number of arrangements of 1,2,...,n^2 in an n X n matrix such that each row is increasing. - Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 12 2001
a(n) == 0 (mod n!). In fact (n^2)! == 0 (mod (n!)^n) by elementary combinatorics, a better result is (n^2)! == 0 (mod (n!)^(n+1)). - Amarnath Murthy, Jul 13 2005
a(n) is also the number of lattice paths from {n}^n to {0}^n using steps that decrement one component by 1. a(2) = 6: [(2,2), (1,2), (0,2), (0,1), (0,0)], [(2,2), (1,2), (1,1), (0,1), (0,0)], [(2,2), (1,2), (1,1), (1,0), (0,0)], [(2,2), (2,1), (1,1), (0,1), (0,0)], [(2,2), (2,1), (1,1), (1,0), (0,0)], [(2,2), (2,1), (2,0), (1,0), (0,0)]. - Alois P. Heinz, May 06 2013
Given n^2 distinguishable balls and n distinguishable urns, a(n) = the number of ways to place n balls in the i-th urn for all 1 <= i <= n, where n = n_1 + n_2 + ... + n_n. - Ross La Haye, Dec 28 2013

Crossrefs

Programs

  • Magma
    [Factorial(n^2) / Factorial(n)^n: n in [0..10]]; // Vincenzo Librandi, Oct 29 2014
  • Maple
    a:= n-> (n^2)! / (n!)^n:
    seq(a(n), n=0..10);  # Alois P. Heinz, Jul 24 2012
  • Mathematica
    Prepend[Table[nn = n^2;nn! Coefficient[Series[(x^n/n!)^n, {x, 0, nn}], x^nn], {n, 1, 15}], 1] (* Geoffrey Critzer, Mar 08 2015 *)
  • PARI
    a(n) = (n^2)! / (n!)^n; \\ Michel Marcus, Oct 28 2014
    

Formula

Using a higher order version of Stirling's formula (the "standard" formula appears in A000142) we have the asymptotic expression: a(n) ~ sqrt(2*Pi) * e^(-1/12) * n^(n^2 - n/2 + 1) / (2*Pi)^(n/2). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 13 2001
a(n) = Product_{k=1..n} binomial(k*n, n). - Vaclav Kotesovec, Mar 10 2019

Extensions

a(0)=1 prepended by Tilman Piesk, Oct 28 2014

A088020 a(n) = (n^2)!.

Original entry on oeis.org

1, 1, 24, 362880, 20922789888000, 15511210043330985984000000, 371993326789901217467999448150835200000000, 608281864034267560872252163321295376887552831379210240000000000
Offset: 0

Views

Author

Hugo Pfoertner, Sep 18 2003

Keywords

Comments

a(n) is the number of ways in which is possible to fill an n X n square matrix with n^2 distinct elements. - Stefano Spezia, Sep 16 2018

Crossrefs

Cf. A000142 (n!), A000290 (n^2).
Cf. A039622, A179268. - Reinhard Zumkeller, Jul 06 2010

Programs

  • GAP
    List([0..10],n->Factorial(n^2)); # Muniru A Asiru, Sep 17 2018
  • Magma
    [Factorial(n^2): n in [0..10]]; // Vincenzo Librandi, May 31 2011
    
  • Maple
    seq(factorial(n^2),n=0..10); # Muniru A Asiru, Sep 17 2018
  • Mathematica
    Table[(n^2)!,{n,0,9}] (* Vladimir Joseph Stephan Orlovsky, May 19 2011 *)
  • PARI
    for(n=0,10,print1((n^2)!,",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Oct 22 2006
    

A107254 a(n) = SF(2n-1)/SF(n-1)^2 where SF = A000178.

Original entry on oeis.org

1, 1, 12, 8640, 870912000, 22122558259200000, 222531556847250309120000000, 1280394777025250130271722799104000000000, 5746332926632566442385615219551212618645504000000000000
Offset: 0

Views

Author

Henry Bottomley, May 14 2005

Keywords

Comments

Inverse product of all matrix elements of n X n Hilbert matrix M(i,j) = 1/(i+j-1) (i,j = 1..n). - Alexander Adamchuk, Apr 12 2006
The n X n matrix with A(i,j) = 1/(i+j-1)! (i,j = 1..n) has determinant (-1)^floor(n/2)/a(n). - Mikhail Lavrov, Nov 01 2022

Examples

			a(3) = 1!*2!*3!*4!*5!/(1!*2!*1!*2!) = 34560/4 = 8640.
n = 2: HilbertMatrix[n,n]
  1/1 1/2
  1/2 1/3
so a(2) = 1 / (1 * 1/2 * 1/2 * 1/3) = 12.
The n X n Hilbert matrix begins:
  1/1 1/2 1/3 1/4  1/5  1/6  1/7  1/8 ...
  1/2 1/3 1/4 1/5  1/6  1/7  1/8  1/9 ...
  1/3 1/4 1/5 1/6  1/7  1/8  1/9 1/10 ...
  1/4 1/5 1/6 1/7  1/8  1/9 1/10 1/11 ...
  1/5 1/6 1/7 1/8  1/9 1/10 1/11 1/12 ...
  1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
		

Crossrefs

Programs

  • Magma
    A107254:= func< n | n eq 0 select 1 else (&*[Factorial(n+j)/Factorial(j): j in [0..n-1]]) >;
    [A107254(n): n in [0..12]]; // G. C. Greubel, Apr 21 2021
  • Maple
    a:= n-> mul((n+i)!/i!, i=0..n-1):
    seq(a(n), n=0..10);  # Alois P. Heinz, Jul 23 2012
  • Mathematica
    Table[Product[(i+j-1),{i,1,n},{j,1,n}], {n,1,10}] (* Alexander Adamchuk, Apr 12 2006 *)
    Table[n!*BarnesG[2n+1]/(BarnesG[n+2]*BarnesG[n+1]), {n,0,12}] (* G. C. Greubel, Apr 21 2021 *)
  • Sage
    a = lambda n: prod(rising_factorial(k,n) for k in (1..n))
    print([a(n) for n in (0..10)]) # Peter Luschny, Nov 29 2015
    

Formula

a(n) = n!*(n+1)!*(n+2)!*...*(2n-1)!/(0!*1!*2!*3!*...*(n-1)!) = A000178(2n-1)/A000178(n-1)^2 = A079478(n)/A000984(n) = A079478(n-1)*A009445(n-1) = A107252(n)*A000142(n) = A088020(n)/A039622(n).
a(n) = 1/Product_{j=1..n} ( Product_{i=1..n} 1/(i+j-1) ). - Alexander Adamchuk, Apr 12 2006
a(n) = 2^(n*(n-1)) * A136411(n) for n > 0 . - Robert Coquereaux, Apr 06 2013
a(n) = A136411(n) * A053763(n) for n > 0. [Following remark from Robert Coquereaux] - M. F. Hasler, Apr 06 2013
a(n) ~ A * 2^(2*n^2-1/12) * n^(n^2+1/12) / exp(3*n^2/2+1/12), where A = 1.28242712910062263687534256886979... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Feb 10 2015
a(n) = Product_{k=1..n} rf(k,n) where rf denotes the rising factorial. - Peter Luschny, Nov 29 2015
a(n) = (n! * G(2*n+1))/(G(n+1)*G(n+2)), where G(n) is the Barnes G - function. - G. C. Greubel, Apr 21 2021

A323529 Number of strict square plane partitions of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 5, 7, 11, 13, 19, 23, 31, 37, 47, 55, 69, 79, 95, 109, 129, 145, 169, 189, 217, 241, 273, 301, 339, 371, 413, 451, 499, 541, 595, 643, 703, 757, 823, 925, 999, 1107, 1229, 1387, 1559, 1807, 2071, 2453, 2893, 3451, 4109, 5011
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2019

Keywords

Examples

			The a(12) = 5 strict square plane partitions:
  [12]
.
  [1 2] [1 2] [1 3] [1 4]
  [3 6] [4 5] [2 6] [2 5]
The a(15) = 13 strict square plane partitions:
  [15]
.
  [7 5] [8 4] [9 3] [6 5] [7 4] [9 2] [6 4] [7 3] [8 2] [6 3] [6 3] [7 2]
  [2 1] [2 1] [2 1] [3 1] [3 1] [3 1] [3 2] [4 1] [4 1] [4 2] [5 1] [5 1]
		

Crossrefs

Programs

  • Maple
    h:= proc(n) h(n):= (n^2)!*mul(k!/(n+k)!, k=0..n-1) end:
    b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(n=0, `if`(issqr(t), h(isqrt(t)), 0),
             b(n, i-1, t) +b(n-i, min(n-i, i-1), t+1)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..70);  # Alois P. Heinz, Jan 24 2019
  • Mathematica
    Table[Sum[Length[Select[Union[Sort/@Tuples[Reverse/@IntegerPartitions[#,{Length[ptn]}]&/@ptn]],UnsameQ@@Join@@#&&And@@OrderedQ/@Transpose[#]&]],{ptn,IntegerPartitions[n]}],{n,30}]
    (* Second program: *)
    h[n_] := (n^2)! Product[k!/(k+n)!, {k, 0, n-1}];
    b[n_, i_, t_] := b[n, i, t] = If[n > i(i+1)/2, 0, If[n == 0, If[IntegerQ[ Sqrt[t]], h[Sqrt[t]], 0], b[n-i, Min[n-i, i-1], t+1] + b[n, i-1, t]]];
    a[n_] := b[n, n, 0];
    a /@ Range[0, 70] (* Jean-François Alcover, May 19 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{j>=0} A039622(j) * A008289(n,j^2). - Alois P. Heinz, Jan 24 2019

Extensions

More terms from Alois P. Heinz, Jan 24 2019

A374514 Number of n X n matrices whose values cover an initial interval of positive integers and whose rows and columns have values which are strictly increasing.

Original entry on oeis.org

1, 1, 3, 197, 732963, 289599115433, 19454710000290140631, 324252739440855086589750626125, 1839663535877691613435674541258128354870051, 4664717625821787781559533555514908690826684467996898799881, 6714190347498763079980307954946450922919624466513063316268554904936722083543
Offset: 0

Views

Author

Andrew Howroyd, Sep 16 2024

Keywords

Examples

			The a(2) = 3 matrices are:
  [1 2]    [1 2]    [1 3]
  [2 3]    [3 4]    [2 4]
		

Crossrefs

Main diagonal of A374985.
Cf. A039622 (case all values also distinct), A068942, A376162 (case for symmetric matrices).

Programs

  • PARI
    \\ See Links section for program file.
    vector(8, n, A374514(n-1))

A060856 Multi-dimensional Catalan numbers: diagonal T(n,n+2) of A060854.

Original entry on oeis.org

1, 14, 6006, 140229804, 278607172289160, 67867669180627125604080, 2760171874087743799855959353857200, 24486819823897171791550434989846505231774984000, 59986874261544072491135645330451363110127974096720977464312000
Offset: 1

Views

Author

R. H. Hardin, May 03 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[j!/(n+j)!,{j,0,n+1}]*(n*(n+2))!,{n,1,10}] (* Vaclav Kotesovec, Mar 09 2015 *)

Formula

a(n) = 0!*1!*...*(k-1)! *(k*n)! / ( n!*(n+1)!*...*(n+k-1)! ) for k=n+2.
a(n) ~ sqrt(Pi) * exp(n^2/2 + 2*n + 25/12) * n^(n^2 + 2*n + 11/12) / (A * 2^(2*n^2 + 4*n + 17/12)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 09 2015
a(n) = A039622(n+1) / (n+1). - Tom Copeland, May 30 2022

A039917 Number of orderings of 1,2,...,n^2 in an n X n matrix such that each row, each column and both diagonals are increasing.

Original entry on oeis.org

1, 1, 9, 2017, 21569213, 17835527619513, 1677123511579177202174, 24742950249259362969953039657613, 75512002909758683196631913316950684079768626, 60752021865167494642984305761115275381534124800396484901989, 15991585283632910454908797943467512732011897255095362833558749286619895509557
Offset: 1

Views

Author

Keywords

Examples

			From _Alois P. Heinz_, Jul 23 2012: (Start)
a(2) = 1:  [1, 3]
           [2, 4].
a(3) = 9:
[1, 4, 7]  [1, 3, 7]  [1, 2, 7]  [1, 4, 6]  [1, 3, 6]
[2, 5, 8]  [2, 5, 8]  [3, 5, 8]  [2, 5, 8]  [2, 5, 8]
[3, 6, 9]  [4, 6, 9]  [4, 6, 9]  [3, 7, 9]  [4, 7, 9]
.
[1, 2, 6]  [1, 4, 6]  [1, 3, 6]  [1, 2, 6]
[3, 5, 8]  [2, 5, 7]  [2, 5, 7]  [3, 5, 7]
[4, 7, 9]  [3, 8, 9]  [4, 8, 9]  [4, 8, 9]. (End)
		

Crossrefs

Programs

  • Maple
    b:= proc(l) option remember; local n; n:= nops(l); `if`({l[]}={0},
          1, add(`if`((l[i]-1<>n-i or i=1 or l[i-1]-1<=n-i) and l[i]>
          `if`(i=n, 0, l[i+1]), b(subsop(i=l[i]-1, l)), 0), i=1..n))
        end:
    a:= n-> b([n$n]):
    seq(a(n), n=1..8);  # Alois P. Heinz, Jul 23 2012
  • Mathematica
    b[l_List] := b[l] = Module[{n = Length[l]}, If[Union[l] == {0}, 1, Sum[If[ (l[[i]]-1 != n-i || i == 1 || l[[i-1]]-1 <= n-i) && l[[i]] > If[i == n, 0, l[[i+1]]], b[ReplacePart[l, i -> l[[i]]-1]], 0], {i, 1, n}]]];
    a[n_] := b[Table[n, {n}]];
    Array[a, 8] (* Jean-François Alcover, Nov 08 2020, after Alois P. Heinz *)

Extensions

One more term from Jud McCranie, Aug 09 2001
a(6)-a(13) from Alois P. Heinz, Jul 23 2012

A067700 a(n) = 2*(n^2)!*Product_{k=0..n-1} k!/(n+k)!.

Original entry on oeis.org

2, 2, 4, 84, 48048, 1402298040, 3343286067469920, 950147368528779758457120, 44162749985403900797695349661715200, 440762756830149092247907829817237094171949712000
Offset: 0

Views

Author

Lekraj Beedassy, Feb 05 2002

Keywords

Crossrefs

Programs

  • Magma
    [n eq 0 select 2 else 2*Round(Factorial(n^2)*(&*[ Gamma(j+1)/Gamma(n+j+1): j in [0..n-1]])): n in [0..12]]; // G. C. Greubel, May 04 2021
    
  • Mathematica
    Table[2*(n^2)!*BarnesG[n+1]^2/BarnesG[2n+1], {n, 0, 12}] (* G. C. Greubel, May 04 2021 *)
  • Sage
    [2*factorial(n^2)*product( gamma(j+1)/gamma(n+j+1) for j in (0..n-1) ) for n in (0..12)] # G. C. Greubel, May 04 2021

Formula

(a(n)/2)^2 = A079402(n).
a(n) = 2*A039622(n). - Vaclav Kotesovec, Dec 17 2016
a(n) = 2*(n^2)!*BarnesG(n+1)^2/BarnesG(2*n+1), where BarnesG(n) = A000178(n). - G. C. Greubel, May 04 2021

Extensions

The original definition was unclear (at least to me) and the explicit formula provided did not match the sequence. The new definition was provided by Robert G. Wilson v and is a close match to the beginning of the old version. - N. J. A. Sloane, Feb 10 2002
Edited by Dean Hickerson, Jan 06 2003

A079402 Number of permutations of n^2 distinct integers free of any monotonic increasing or decreasing (n+1)-subsequence.

Original entry on oeis.org

1, 1, 4, 1764, 577152576, 491609948246960400, 2794390432234620616607526201600, 225695005480541203944756162668572542540719673600, 487587121568323060029971679617336086880787102621519060769151477760000
Offset: 0

Views

Author

Dean Hickerson, Jan 06 2003

Keywords

Comments

Conjecture: this is equal to the number of permutations of n^2 distinct integers free of any monotonic increasing or decreasing (n+1)-subsequence. (By the Erdos-Szekeres Theorem, every permutation of n^2+1 distinct integers has such a subsequence.) - Joseph Myers, Jan 04 2003
Claude Lenormand (claude.lenormand(AT)free.fr) confirms this conjecture. - Jan 06, 2002.
a(n) is equal to the number of permutations of n^2 distinct integers having no monotonic sequences of length more than n. - Michael Lugo (mlugo(AT)math.upenn.edu), Mar 25 2009
By Robinson-Schensted correspondance, equals the square of the number of square standard Young tableaux. - Wouter Meeussen, Jan 25 2014

Examples

			The case n=2: only a(2)=4 of the 24 permutations of {1,2,3,4} are devoid of any 3-term increasing or decreasing subsequence, namely {2,1,4,3}, {2,4,1,3}, {3,1,4,2}, {3,4,1,2}.
		

References

  • Martin Gardner, Riddles of The Sphinx, MAA, NML vol. 32, 1987, p. 6.
  • D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting ang Searching, Addison-Wesley, 1973, p. 69. [From Michael Lugo (mlugo(AT)math.upenn.edu), Mar 25 2009]

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else ( Round(Factorial(n^2)*(&*[ Gamma(j+1)/Gamma(n+j+1): j in [0..n-1]])) )^2: n in [0..10]]; // G. C. Greubel, May 04 2021
    
  • Maple
    a:= n-> ((n^2)! *mul(k!/(n+k)!, k=0..n-1))^2:
    seq(a(n), n=0..8);  # Alois P. Heinz, Jan 25 2014
  • Mathematica
    Table[( (n^2)! Product[k!/(n+k)!, {k,0,n-1}] )^2, {n,0,5}] (* Wouter Meeussen, Jan 25 2014 *)
    Table[((n^2)!*BarnesG[n+1]^2/BarnesG[2n+1])^2, {n, 0, 10}] (* G. C. Greubel, May 04 2021 *)
  • Sage
    [( factorial(n^2)*product( gamma(j+1)/gamma(n+j+1) for j in (0..n-1) ) )^2 for n in (0..10)] # G. C. Greubel, May 04 2021

Formula

a(n) = ((n^2)! * Product_{k=0..n-1} k!/(n+k)!)^2.
a(n) = (A067700(n)/2)^2 = A039622(n)^2.
a(n) ~ Pi * n^(2*n^2+11/6) * exp(n^2 + 1/6) / (A^2 * 2^(4*n^2-7/6)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Dec 17 2016
a(n) = ( (n^2)!*BarnesG(n+1)^2/BarnesG(2*n+1) )^2, where BarnesG(n) = A000178(n). - G. C. Greubel, May 04 2021

Extensions

Better name from Wouter Meeussen, Jan 25 2014
Showing 1-10 of 14 results. Next