cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A323522 Number of ways to fill a square matrix with the parts of a strict integer partition of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 25, 25, 49, 73, 121, 145, 217, 265, 361, 433, 553, 649, 817, 937, 1129, 1297, 1537, 1729, 2017, 2257, 2593, 2881, 3265, 3601, 4057, 4441, 4945, 5401, 5977, 6481, 7129, 7705, 8425, 9073, 9865, 373465, 374353, 738025, 1101865, 1828513
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2019

Keywords

Examples

			The a(10) = 25 matrices:
  [10]
.
  [4 3] [4 3] [4 2] [4 2] [4 1] [4 1] [3 4] [3 4]
  [2 1] [1 2] [3 1] [1 3] [3 2] [2 3] [2 1] [1 2]
.
  [3 2] [3 2] [3 1] [3 1] [2 4] [2 4] [2 3] [2 3]
  [4 1] [1 4] [4 2] [2 4] [3 1] [1 3] [4 1] [1 4]
.
  [2 1] [2 1] [1 4] [1 4] [1 3] [1 3] [1 2] [1 2]
  [4 3] [3 4] [3 2] [2 3] [4 2] [2 4] [4 3] [3 4]
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y)
          -> x+y, b(n, i-1), `if`(i>n, [], [0, b(n-i, i-1)[]]), 0)))
        end:
    a:= n-> (l-> add(l[i^2+1]*(i^2)!, i=0..floor(sqrt(nops(l)-1))))(b(n$2)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 17 2019
  • Mathematica
    Table[Sum[(k^2)!*Length[Select[IntegerPartitions[n,{k^2}],UnsameQ@@#&]],{k,n}],{n,20}]
    (* Second program: *)
    q[n_, k_] := q[n, k] = If[n < k || k < 1, 0,
         If[n == 1, 1, q[n-k, k] + q[n-k, k-1]]];
    a[n_] := If[n == 0, 1, Sum[(k^2)! q[n, k^2], {k, 0, n}]];
    a /@ Range[0, 50] (* Jean-François Alcover, May 20 2021 *)

Formula

a(n) = Sum_{k >= 0} (k^2)! * Q(n, k^2) where Q = A008289.

A323523 Number of positive integer square matrices with entries summing to n and equal row and column sums.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 12, 1, 7, 22, 9, 1, 64, 1, 34, 121, 11, 1, 525, 2, 13, 407, 2022, 1, 801, 1, 10163, 1036, 17, 6211, 41735, 1, 19, 2212, 285784, 1, 3822, 1, 381446, 2229142, 23, 1, 1189540, 2, 22069276, 7261, 2309410, 1, 20943183, 164176641
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2019

Keywords

Comments

Also the number of non-normal semi-magic squares with positive integer entries summing to n.

Examples

			The a(12) = 12 matrices:
  [12]
.
  [1 5] [5 1] [2 4] [4 2] [3 3]
  [5 1] [1 5] [4 2] [2 4] [3 3]
.
  [1 1 2] [1 1 2] [1 2 1] [1 2 1] [2 1 1] [2 1 1]
  [1 2 1] [2 1 1] [1 1 2] [2 1 1] [1 1 2] [1 2 1]
  [2 1 1] [1 2 1] [2 1 1] [1 1 2] [1 2 1] [1 1 2]
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnsqrs[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),And[SameQ@@Length/@#,Length[#]==0||Length[#]==Length[First[#]]]&];
    Table[Sum[Length[Select[ptnsqrs[Times@@Prime/@y],And[SameQ@@Total/@#,SameQ@@Total/@Transpose[#]]&]],{y,IntegerPartitions[n]}],{n,10}]

Formula

a(p) = 1 and a(p^2) = 2 for p prime (see comment in A323349). - Chai Wah Wu, Jan 20 2019
a(n) = Sum_{d|n, d<=n/d} A257493(d, n/d-d) for n > 0. - Andrew Howroyd, Apr 10 2020

Extensions

a(16)-a(55) from Chai Wah Wu, Jan 20 2019

A323530 Number of square plane partitions of n with strictly decreasing rows and columns.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 4, 5, 8, 10, 15, 18, 25, 30, 39, 46, 58, 67, 82, 94, 112, 127, 149, 168, 194, 218, 251, 282, 324, 368, 425, 489, 573, 670, 797, 952, 1148, 1392, 1703, 2086, 2568, 3168, 3908, 4823, 5947, 7318, 8986, 11012, 13443, 16371, 19866
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2019

Keywords

Examples

			The a(12) = 8 plane partitions:
  [12]
.
  [5 4] [6 3] [7 2] [5 3] [6 2] [4 3] [5 2]
  [2 1] [2 1] [2 1] [3 1] [3 1] [3 2] [4 1]
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Length[Select[Tuples[IntegerPartitions[#,{Length[ptn]}]&/@ptn],And@@Greater@@@#&&And@@Greater@@@Transpose[#]&]],{ptn,IntegerPartitions[n]}],{n,30}]

A306320 Number of square plane partitions of n with distinct row sums and distinct column sums.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 5, 5, 10, 11, 18, 21, 31, 37, 56, 70, 97, 134, 180, 247, 343, 462, 623, 850, 1128, 1509, 2004, 2649, 3467, 4590, 5958, 7814, 10161, 13287, 17208, 22495, 29129, 37997, 49229, 64098, 82940, 107868, 139390, 180737, 233214, 301527, 388018, 500058
Offset: 0

Views

Author

Gus Wiseman, Feb 07 2019

Keywords

Examples

			The a(12) = 21 square plane partitions with distinct row sums and distinct column sums:
[twelve]
.
[64][73][82][91][54][63][72][81][44][53][53][62][62][71][43][43][52][52][61]
[11][11][11][11][21][21][21][21][31][22][31][22][31][31][32][41][32][41][41]
.
[221]
[211]
[111]
		

Crossrefs

Cf. A000219, A089299 (square plane partitions), A101509, A271619, A279785, A306318, A323429, A323529, A323530, A323531.

Programs

  • Mathematica
    Table[Sum[Length[Select[Union[Reverse/@Sort/@Tuples[IntegerPartitions[#,{Length[ptn]}]&/@ptn]],UnsameQ@@Total/@#&&UnsameQ@@Total/@If[#=={},{},Transpose[#]]&&And@@OrderedQ/@Reverse/@If[#=={},{},Transpose[#]]&]],{ptn,IntegerPartitions[n]}],{n,0,20}]
Showing 1-4 of 4 results.