A323522 Number of ways to fill a square matrix with the parts of a strict integer partition of n.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 25, 25, 49, 73, 121, 145, 217, 265, 361, 433, 553, 649, 817, 937, 1129, 1297, 1537, 1729, 2017, 2257, 2593, 2881, 3265, 3601, 4057, 4441, 4945, 5401, 5977, 6481, 7129, 7705, 8425, 9073, 9865, 373465, 374353, 738025, 1101865, 1828513
Offset: 0
Keywords
Examples
The a(10) = 25 matrices: [10] . [4 3] [4 3] [4 2] [4 2] [4 1] [4 1] [3 4] [3 4] [2 1] [1 2] [3 1] [1 3] [3 2] [2 3] [2 1] [1 2] . [3 2] [3 2] [3 1] [3 1] [2 4] [2 4] [2 3] [2 3] [4 1] [1 4] [4 2] [2 4] [3 1] [1 3] [4 1] [1 4] . [2 1] [2 1] [1 4] [1 4] [1 3] [1 3] [1 2] [1 2] [4 3] [3 4] [3 2] [2 3] [4 2] [2 4] [4 3] [3 4]
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..7000
Crossrefs
Programs
-
Maple
b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y) -> x+y, b(n, i-1), `if`(i>n, [], [0, b(n-i, i-1)[]]), 0))) end: a:= n-> (l-> add(l[i^2+1]*(i^2)!, i=0..floor(sqrt(nops(l)-1))))(b(n$2)): seq(a(n), n=0..50); # Alois P. Heinz, Jan 17 2019
-
Mathematica
Table[Sum[(k^2)!*Length[Select[IntegerPartitions[n,{k^2}],UnsameQ@@#&]],{k,n}],{n,20}] (* Second program: *) q[n_, k_] := q[n, k] = If[n < k || k < 1, 0, If[n == 1, 1, q[n-k, k] + q[n-k, k-1]]]; a[n_] := If[n == 0, 1, Sum[(k^2)! q[n, k^2], {k, 0, n}]]; a /@ Range[0, 50] (* Jean-François Alcover, May 20 2021 *)
Formula
a(n) = Sum_{k >= 0} (k^2)! * Q(n, k^2) where Q = A008289.
Comments