cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A323529 Number of strict square plane partitions of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 5, 7, 11, 13, 19, 23, 31, 37, 47, 55, 69, 79, 95, 109, 129, 145, 169, 189, 217, 241, 273, 301, 339, 371, 413, 451, 499, 541, 595, 643, 703, 757, 823, 925, 999, 1107, 1229, 1387, 1559, 1807, 2071, 2453, 2893, 3451, 4109, 5011
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2019

Keywords

Examples

			The a(12) = 5 strict square plane partitions:
  [12]
.
  [1 2] [1 2] [1 3] [1 4]
  [3 6] [4 5] [2 6] [2 5]
The a(15) = 13 strict square plane partitions:
  [15]
.
  [7 5] [8 4] [9 3] [6 5] [7 4] [9 2] [6 4] [7 3] [8 2] [6 3] [6 3] [7 2]
  [2 1] [2 1] [2 1] [3 1] [3 1] [3 1] [3 2] [4 1] [4 1] [4 2] [5 1] [5 1]
		

Crossrefs

Programs

  • Maple
    h:= proc(n) h(n):= (n^2)!*mul(k!/(n+k)!, k=0..n-1) end:
    b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(n=0, `if`(issqr(t), h(isqrt(t)), 0),
             b(n, i-1, t) +b(n-i, min(n-i, i-1), t+1)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..70);  # Alois P. Heinz, Jan 24 2019
  • Mathematica
    Table[Sum[Length[Select[Union[Sort/@Tuples[Reverse/@IntegerPartitions[#,{Length[ptn]}]&/@ptn]],UnsameQ@@Join@@#&&And@@OrderedQ/@Transpose[#]&]],{ptn,IntegerPartitions[n]}],{n,30}]
    (* Second program: *)
    h[n_] := (n^2)! Product[k!/(k+n)!, {k, 0, n-1}];
    b[n_, i_, t_] := b[n, i, t] = If[n > i(i+1)/2, 0, If[n == 0, If[IntegerQ[ Sqrt[t]], h[Sqrt[t]], 0], b[n-i, Min[n-i, i-1], t+1] + b[n, i-1, t]]];
    a[n_] := b[n, n, 0];
    a /@ Range[0, 70] (* Jean-François Alcover, May 19 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{j>=0} A039622(j) * A008289(n,j^2). - Alois P. Heinz, Jan 24 2019

Extensions

More terms from Alois P. Heinz, Jan 24 2019

A306320 Number of square plane partitions of n with distinct row sums and distinct column sums.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 5, 5, 10, 11, 18, 21, 31, 37, 56, 70, 97, 134, 180, 247, 343, 462, 623, 850, 1128, 1509, 2004, 2649, 3467, 4590, 5958, 7814, 10161, 13287, 17208, 22495, 29129, 37997, 49229, 64098, 82940, 107868, 139390, 180737, 233214, 301527, 388018, 500058
Offset: 0

Views

Author

Gus Wiseman, Feb 07 2019

Keywords

Examples

			The a(12) = 21 square plane partitions with distinct row sums and distinct column sums:
[twelve]
.
[64][73][82][91][54][63][72][81][44][53][53][62][62][71][43][43][52][52][61]
[11][11][11][11][21][21][21][21][31][22][31][22][31][31][32][41][32][41][41]
.
[221]
[211]
[111]
		

Crossrefs

Cf. A000219, A089299 (square plane partitions), A101509, A271619, A279785, A306318, A323429, A323529, A323530, A323531.

Programs

  • Mathematica
    Table[Sum[Length[Select[Union[Reverse/@Sort/@Tuples[IntegerPartitions[#,{Length[ptn]}]&/@ptn]],UnsameQ@@Total/@#&&UnsameQ@@Total/@If[#=={},{},Transpose[#]]&&And@@OrderedQ/@Reverse/@If[#=={},{},Transpose[#]]&]],{ptn,IntegerPartitions[n]}],{n,0,20}]
Showing 1-2 of 2 results.