A323529 Number of strict square plane partitions of n.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 5, 7, 11, 13, 19, 23, 31, 37, 47, 55, 69, 79, 95, 109, 129, 145, 169, 189, 217, 241, 273, 301, 339, 371, 413, 451, 499, 541, 595, 643, 703, 757, 823, 925, 999, 1107, 1229, 1387, 1559, 1807, 2071, 2453, 2893, 3451, 4109, 5011
Offset: 0
Keywords
Examples
The a(12) = 5 strict square plane partitions: [12] . [1 2] [1 2] [1 3] [1 4] [3 6] [4 5] [2 6] [2 5] The a(15) = 13 strict square plane partitions: [15] . [7 5] [8 4] [9 3] [6 5] [7 4] [9 2] [6 4] [7 3] [8 2] [6 3] [6 3] [7 2] [2 1] [2 1] [2 1] [3 1] [3 1] [3 1] [3 2] [4 1] [4 1] [4 2] [5 1] [5 1]
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..7500
Crossrefs
Programs
-
Maple
h:= proc(n) h(n):= (n^2)!*mul(k!/(n+k)!, k=0..n-1) end: b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, `if`(issqr(t), h(isqrt(t)), 0), b(n, i-1, t) +b(n-i, min(n-i, i-1), t+1))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..70); # Alois P. Heinz, Jan 24 2019
-
Mathematica
Table[Sum[Length[Select[Union[Sort/@Tuples[Reverse/@IntegerPartitions[#,{Length[ptn]}]&/@ptn]],UnsameQ@@Join@@#&&And@@OrderedQ/@Transpose[#]&]],{ptn,IntegerPartitions[n]}],{n,30}] (* Second program: *) h[n_] := (n^2)! Product[k!/(k+n)!, {k, 0, n-1}]; b[n_, i_, t_] := b[n, i, t] = If[n > i(i+1)/2, 0, If[n == 0, If[IntegerQ[ Sqrt[t]], h[Sqrt[t]], 0], b[n-i, Min[n-i, i-1], t+1] + b[n, i-1, t]]]; a[n_] := b[n, n, 0]; a /@ Range[0, 70] (* Jean-François Alcover, May 19 2021, after Alois P. Heinz *)
Formula
Extensions
More terms from Alois P. Heinz, Jan 24 2019