cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A022915 Multinomial coefficients (0, 1, ..., n)! = C(n+1,2)!/(0!*1!*2!*...*n!).

Original entry on oeis.org

1, 1, 3, 60, 12600, 37837800, 2053230379200, 2431106898187968000, 73566121315513295589120000, 65191584694745586153436251091200000, 1906765806522767212441719098019963758016000000, 2048024348726152339387799085049745725891853852479488000000
Offset: 0

Views

Author

Keywords

Comments

Number of ways to put numbers 1, 2, ..., n*(n+1)/2 in a triangular array of n rows in such a way that each row is increasing. Also number of ways to choose groups of 1, 2, 3, ..., n-1 and n objects out of n*(n+1)/2 objects. - Floor van Lamoen, Jul 16 2001
a(n) is the number of ways to linearly order the multiset {1,2,2,3,3,3,...n,n,...n}. - Geoffrey Critzer, Mar 08 2009
Also the number of distinct adjacency matrices in the n-triangular honeycomb rook graph. - Eric W. Weisstein, Jul 14 2017

Examples

			From _Gus Wiseman_, Aug 12 2020: (Start)
The a(3) = 60 permutations of the prime indices of A006939(3) = 360:
  (111223)  (121123)  (131122)  (212113)  (231211)
  (111232)  (121132)  (131212)  (212131)  (232111)
  (111322)  (121213)  (131221)  (212311)  (311122)
  (112123)  (121231)  (132112)  (213112)  (311212)
  (112132)  (121312)  (132121)  (213121)  (311221)
  (112213)  (121321)  (132211)  (213211)  (312112)
  (112231)  (122113)  (211123)  (221113)  (312121)
  (112312)  (122131)  (211132)  (221131)  (312211)
  (112321)  (122311)  (211213)  (221311)  (321112)
  (113122)  (123112)  (211231)  (223111)  (321121)
  (113212)  (123121)  (211312)  (231112)  (321211)
  (113221)  (123211)  (211321)  (231121)  (322111)
(End)
		

Crossrefs

A190945 counts the case of anti-run permutations.
A317829 counts partitions of this multiset.
A325617 is the version for factorials instead of superprimorials.
A006939 lists superprimorials or Chernoff numbers.
A008480 counts permutations of prime indices.
A181818 gives products of superprimorials, with complement A336426.

Programs

  • Maple
    with(combinat):
    a:= n-> multinomial(binomial(n+1, 2), $0..n):
    seq(a(n), n=0..12);  # Alois P. Heinz, May 18 2013
  • Mathematica
    Table[Apply[Multinomial ,Range[n]], {n, 0, 20}]  (* Geoffrey Critzer, Dec 09 2012 *)
    Table[Multinomial @@ Range[n], {n, 0, 20}] (* Eric W. Weisstein, Jul 14 2017 *)
    Table[Binomial[n + 1, 2]!/BarnesG[n + 2], {n, 0, 20}] (* Eric W. Weisstein, Jul 14 2017 *)
    Table[Length[Permutations[Join@@Table[i,{i,n},{i}]]],{n,0,4}] (* Gus Wiseman, Aug 12 2020 *)
  • PARI
    a(n) = binomial(n+1,2)!/prod(k=1, n, k^(n+1-k)); \\ Michel Marcus, May 02 2019

Formula

a(n) = (n*(n+1)/2)!/(0!*1!*2!*...*n!).
a(n) = a(n-1) * A014068(n). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 08 2001.
a(n) = A052295(n)/A000178(n). - Lekraj Beedassy, Feb 19 2004
a(n) = A208437(n*(n+1)/2,n). - Alois P. Heinz, Apr 08 2016
a(n) ~ A * exp(n^2/4 + n + 1/6) * n^(n^2/2 + 7/12) / (2^((n+1)^2/2) * Pi^(n/2)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, May 02 2019
a(n) = A327803(n*(n+1)/2,n). - Alois P. Heinz, Sep 25 2019
a(n) = A008480(A006939(n)). - Gus Wiseman, Aug 12 2020

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 11 2001
More terms from Michel ten Voorde, Apr 12 2001
Better definition from L. Edson Jeffery, May 18 2013

A187783 De Bruijn's triangle, T(m,n) = (m*n)!/(n!^m) read by downward antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 6, 1, 1, 1, 20, 90, 24, 1, 1, 1, 70, 1680, 2520, 120, 1, 1, 1, 252, 34650, 369600, 113400, 720, 1, 1, 1, 924, 756756, 63063000, 168168000, 7484400, 5040, 1
Offset: 0

Views

Author

Robert G. Wilson v, Jan 05 2013

Keywords

Comments

From Tilman Piesk, Oct 28 2014: (Start)
Number of permutations of a multiset that contains m different elements n times. These multisets have the signatures A249543(m,n-1) for m>=1 and n>=2.
In an m-dimensional Pascal tensor (the generalization of a symmetric Pascal matrix) P(x1,...,xn) = (x1+...+xn)!/(x1!*...*xn!), so the main diagonal of an m-dimensional Pascal tensor is D(n) = (m*n)!/(n!^m). These diagonals are the rows of this array (with m>0), which begins like this:
m\n:0 1 2 3 4 5
0: 1 1 1 1 1 1 ... A000012;
1: 1 1 1 1 1 1 ... A000012;
2: 1 2 6 20 70 252 ... A000984;
3: 1 6 90 1680 34650 756756 ... A006480;
4: 1 24 2520 369600 63063000 11732745024 ... A008977;
5: 1 120 113400 168168000 305540235000 623360743125120 ... A008978;
6: 1 720 7484400 137225088000 3246670537110000 88832646059788350720 ... A008979;
with columns: A000142 (n=1), A000680 (n=2), A014606 (n=3), A014608 (n=4), A014609 (n=5).
A089759 is the transpose of this matrix. A034841 is its diagonal. A141906 is its lower triangle. A120666 is the upper triangle of this matrix with indices starting from 1. A248827 are the diagonal sums (or the row sums of the triangle).
(End)

Examples

			T(3,5) = (3*5)!/(5!^3) = 756756 = A014609(3) = A006480(5) is the number of permutations of a multiset that contains 3 different elements 5 times, e.g., {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3}.
		

Crossrefs

Cf. A089759 (transposed), A141906 (subtriangle), A120666 (subtriangle transposed), A060538 (1st row/column removed).
Main diagonal gives: A034841.
Row sums of the triangle: A248827.

Programs

  • Magma
    [Factorial(k*(n-k))/(Factorial(n-k))^k: k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 26 2022
    
  • Mathematica
    T[n_, k_]:= (k*n)!/(n!)^k; Table[T[n, k-n], {k, 9}, {n, 0, k-1}]//Flatten
  • SageMath
    def A187783(n,k): return gamma(k*(n-k)+1)/(factorial(n-k))^k
    flatten([[A187783(n,k) for k in range(n+1)] for n in range(11)]) # G. C. Greubel, Dec 26 2022

Formula

T(m,n) = (m*n)!/(n!)^m.
A060540(m,n) = T(m,n)/m! . - R. J. Mathar, Jun 21 2023

Extensions

Row m=0 prepended by Tilman Piesk, Oct 28 2014

A089759 Table T(n,k), 0<=k, 0<=n, read by antidiagonals, defined by T(n,k) = (k*n)! / (n!)^k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 6, 1, 1, 1, 24, 90, 20, 1, 1, 1, 120, 2520, 1680, 70, 1, 1, 1, 720, 113400, 369600, 34650, 252, 1, 1, 1, 5040, 7484400, 168168000, 63063000, 756756, 924, 1, 1, 1, 40320, 681080400, 137225088000, 305540235000, 11732745024, 17153136, 3432, 1, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 08 2004; revised Jun 08 2005

Keywords

Comments

T(n,k) is the number of lattice paths from {n}^k to {0}^k using steps that decrement one component by 1. - Alois P. Heinz, May 06 2013

Examples

			Row n=0: 1, 1,   1,      1,           1,               1, ... A000012
Row n=1: 1, 1,   2,      6,          24,             120, ... A000142
Row n=2: 1, 1,   6,     90,        2520,          113400, ... A000680
Row n=3: 1, 1,  20,   1680,      369600,       168168000, ... A014606
Row n=4: 1, 1,  70,  34650,    63063000,    305540235000, ... A014608
Row n=5: 1, 1, 252, 756756, 11732745024, 623360743125120, ... A014609
		

Crossrefs

Cf. A000680, A014606, A014608, A014609, A000984, A187783 (transposed version).
Main diagonal gives A034841.

Programs

  • Maple
    T:= (n, k)-> (k*n)!/(n!)^k:
    seq(seq(T(n, d-n), n=0..d), d=0..10);  # Alois P. Heinz, Aug 16 2012
  • Mathematica
    T[n_, k_] := (k*n)!/(n!)^k; Table[T[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 19 2015 *)

Extensions

Corrected by Alois P. Heinz, Aug 16 2012

A057599 a(n) = (n^2)!/(n!)^(n+1); number of ways of dividing n^2 labeled items into n unlabeled boxes of n items each.

Original entry on oeis.org

1, 1, 3, 280, 2627625, 5194672859376, 3708580189773818399040, 1461034854396267778567973305958400, 450538787986875167583433232345723106006796340625, 146413934927214422927834111686633731590253260933067148964500000000
Offset: 0

Views

Author

Henry Bottomley, Oct 06 2000

Keywords

Comments

Note that if n=p^k for p prime then a(n) is coprime to n (i.e., a(n) is not divisible by p).
a(n) is also the number of labelings for the simple graph K_n X K_n, the graph Cartesian product of the complete graph with itself. - Geoffrey Critzer, Oct 16 2016
a(n) is also the number of knockout tournament seedings with 2 rounds and n participants in each match. - Alexander Karpov, Dec 15 2017

Examples

			a(2)=3 since the possibilities are {{0,1},{2,3}}; {{0,2},{1,3}}; and {{0,3},{1,2}}.
		

Crossrefs

Main diagonal of A060540.

Programs

  • Maple
    a:= n-> (n^2)!/(n!)^(n+1):
    seq(a(n), n=0..10);  # Alois P. Heinz, Apr 29 2020
  • Mathematica
    Table[a[z_] := z^n/n!; (n^2)! Coefficient[Series[a[a[z]], {z, 0, n^2}],z^(n^2)], {n, 1, 10}] (* Geoffrey Critzer, Oct 16 2016 *)
  • PARI
    a(n) = (n^2)!/(n!)^(n+1); \\ Altug Alkan, Dec 17 2017

Formula

a(n) = A034841(n)/A000142(n).
a(n) ~ exp(n - 1/12) * n^((n-1)*(2*n-1)/2) / (2*Pi)^(n/2). - Vaclav Kotesovec, Nov 23 2018

A096131 Sum of the terms of the n-th row of triangle pertaining to A096130.

Original entry on oeis.org

1, 7, 105, 2386, 71890, 2695652, 120907185, 6312179764, 375971507406, 25160695768715, 1869031937691061, 152603843369288819, 13584174777196666630, 1309317592648179024666, 135850890740575408906465
Offset: 1

Views

Author

Amarnath Murthy, Jul 04 2004

Keywords

Comments

The product of the terms of the n-th row is given by A034841.
Collection of partial binary matrices: 1 to n rows of length n and a total of n entries set to one in each partial matrix. - Olivier Gérard, Aug 08 2016

Examples

			From _Seiichi Manyama_, Aug 18 2018: (Start)
a(1) = (1/1!) * (1) = 1.
a(2) = (1/2!) * (1*2 + 3*4) = 7.
a(3) = (1/3!) * (1*2*3 + 4*5*6 + 7*8*9) = 105.
a(4) = (1/4!) * (1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15*16) = 2386. (End)
		

Crossrefs

Programs

  • GAP
    List(List([1..20],n->List([1..n],k->Binomial(k*n,n))),Sum); # Muniru A Asiru, Aug 12 2018
    
  • Maple
    A096130 := proc(n,k) binomial(k*n,n) ; end: A096131 := proc(n) local k; add( A096130(n,k),k=1..n) ; end: for n from 1 to 18 do printf("%d, ",A096131(n)) ; od ; # R. J. Mathar, Apr 30 2007
    seq(add((binomial(n*k,n)), k=0..n), n=1..15); # Zerinvary Lajos, Sep 16 2007
  • Mathematica
    Table[Sum[Binomial[k*n, n], {k, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Jun 06 2013 *)
  • PARI
    a(n) = sum(k=1, n, binomial(k*n, n)); \\ Michel Marcus, Aug 20 2018

Formula

a(n) = Sum_{k=1..n} binomial(k*n, n). - Reinhard Zumkeller, Jan 09 2005
a(n) = (1/n!) * Sum_{j=1..n} Product_{i=n*(j-1)+1..n*j} i. - Reinhard Zumkeller, Jan 09 2005 [corrected by Seiichi Manyama, Aug 17 2018]
a(n) ~ exp(1)/(exp(1)-1) * binomial(n^2,n). - Vaclav Kotesovec, Jun 06 2013

Extensions

More terms from R. J. Mathar, Apr 30 2007
Edited by N. J. A. Sloane, Sep 06 2008 at the suggestion of R. J. Mathar

A060538 Square array read by antidiagonals of number of ways of dividing n*k labeled items into n labeled boxes with k items in each box.

Original entry on oeis.org

1, 1, 2, 1, 6, 6, 1, 20, 90, 24, 1, 70, 1680, 2520, 120, 1, 252, 34650, 369600, 113400, 720, 1, 924, 756756, 63063000, 168168000, 7484400, 5040, 1, 3432, 17153136, 11732745024, 305540235000, 137225088000, 681080400, 40320, 1, 12870
Offset: 1

Views

Author

Henry Bottomley, Apr 02 2001

Keywords

Examples

			       1        1        1        1
       2        6       20       70
       6       90     1680    34650
      24     2520   369600 63063000
		

Crossrefs

Subtable of A187783.
Rows include A000012, A000984, A006480, A008977, A008978 etc.
Columns include A000142, A000680, A014606, A014608, A014609 etc.
Main diagonal is A034841.

Programs

  • PARI
    T(n,k)=(n*k)!/k!^n;
    for(n=1, 6, for(k=1, 6, print1(T(n,k), ", ")); print) \\ Harry J. Smith, Jul 06 2009

Formula

T(n, k) = (nk)!/k!^n = T(n-1, k)*binomial(nk, k) = T(n-1, k)*A060539(n, k) = A060540(n, k)*A000142(k).

A229050 G.f.: Sum_{n>=0} (n^2)!/n!^n * x^n / (1-x)^(n^2+1).

Original entry on oeis.org

1, 2, 9, 1714, 63079895, 623361815288736, 2670177752844538217570947, 7363615666255986180456959666126927684, 18165723931631174937747337664794705661513150850379149, 53130688706387570972824498004857476332107293478561950967662962585645710
Offset: 0

Views

Author

Paul D. Hanna, Sep 22 2013

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 9*x^2 + 1714*x^3 + 63079895*x^4 + 623361815288736*x^5 +...
where
A(x) = 1/(1-x) + x/(1-x)^2 + (4!/2!^2)*x^2/(1-x)^5 + (9!/3!^3)*x^3/(1-x)^10 + (16!/4!^4)*x^4/(1-x)^17 + (25!/5!^5)*x^5/(1-x)^26 +...
Equivalently,
A(x) = 1/(1-x) + x/(1-x)^2 + 6*x^2/(1-x)^5 + 1680*x^3/(1-x)^10 + 63063000*x^4/(1-x)^17 + 623360743125120*x^5/(1-x)^26 +...+ A034841(n)*x^n/(1-x)^(n^2+1) +...
Illustrate formula a(n) = Sum_{k=0..n} Product_{j=0..k-1} C(n+j*k,k) for initial terms:
a(0) = 1;
a(1) = 1 + C(1,1);
a(2) = 1 + C(2,1) + C(2,2)*C(4,2);
a(3) = 1 + C(3,1) + C(3,2)*C(5,2) + C(3,3)*C(6,3)*C(9,3);
a(4) = 1 + C(4,1) + C(4,2)*C(6,2) + C(4,3)*C(7,3)*C(10,3) + C(4,4)*C(8,4)*C(12,4)*C(16,4);
a(5) = 1 + C(5,1) + C(5,2)*C(7,2) + C(5,3)*C(8,3)*C(11,3) + C(5,4)*C(9,4)*C(13,4)*C(17,4) + C(5,5)*C(10,5)*C(15,5)*C(20,5)*C(25,5); ...
which numerically equals:
a(0) = 1;
a(1) = 1 + 1 = 2;
a(2) = 1 + 2 + 1*6 = 9;
a(3) = 1 + 3 + 3*10 + 1*20*84 = 1714;
a(4) = 1 + 4 + 6*15 + 4*35*120 + 1*70*495*1820 = 63079895;
a(5) = 1 + 5 + 10*21 + 10*56*165 + 5*126*715*2380 + 1*252*3003*15504*53130 = 623361815288736; ...
		

Crossrefs

Programs

  • Maple
    with(combinat):
    a:= n-> add(multinomial(n+(k-1)*k, n-k, k$k), k=0..n):
    seq(a(n), n=0..15);  # Alois P. Heinz, Sep 23 2013
  • Mathematica
    Table[Sum[Product[Binomial[n+j*k,k],{j,0,k-1}],{k,0,n}],{n,0,10}] (* Vaclav Kotesovec, Sep 23 2013 *)
  • PARI
    {a(n)=polcoeff(sum(m=0, n, (m^2)!/m!^m*x^m/(1-x+x*O(x^n))^(m^2+1)), n)}
    for(n=0,15,print1(a(n),", "))
    
  • PARI
    {a(n)=sum(k=0,n,prod(j=0,k-1,binomial(n+j*k,k)))}
    for(n=0,15,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} Product_{j=0..k-1} binomial(n+j*k,k).
a(n) ~ exp(-1/12) * n^(n^2-n/2+1) / (2*Pi)^((n-1)/2). - Vaclav Kotesovec, Sep 23 2013

A096126 a(n) is the least integer of the form (n^2)!/(n!)^k.

Original entry on oeis.org

1, 3, 280, 2627625, 5194672859376, 5150805819130303332, 1461034854396267778567973305958400, 450538787986875167583433232345723106006796340625, 146413934927214422927834111686633731590253260933067148964500000000
Offset: 1

Views

Author

Amarnath Murthy, Jul 03 2004

Keywords

Comments

(n^2)!/(n!)^(n+1) is an integer for every n (see A057599). Hence k >= n+1. Conjecture: k=n+1 only when n is prime or a power of a prime.

Examples

			a(4) = 16!/(4!)^5 = 2627625 which is not further divisible by 24.
		

Crossrefs

Programs

  • PARI
    a(n)={if(n==1, 1, (n^2)!/(n!^valuation((n^2)!,n!)))} \\ Andrew Howroyd, Nov 09 2019

Extensions

Edited by Don Reble, Jul 04 2004
a(9) from Andrew Howroyd, Nov 09 2019

A274762 Number of sequences with up to n copies each of 1,2,...,n.

Original entry on oeis.org

1, 2, 19, 5248, 191448941, 1856296498826906, 7843008902239185171370147, 21408941228439913825832318523364743824, 52400635808473472283994952631626957015306076632624953, 152306240915343870544748050434914720360496623911547121447677238156864610
Offset: 0

Views

Author

Alois P. Heinz, Jul 04 2016

Keywords

Examples

			a(0) = 1: () = the empty sequence.
a(1) = 2: (), 1.
a(2) = 19: (), 1, 2, 11, 12, 21, 22, 112, 121, 122, 211, 212, 221, 1122, 1212, 1221, 2112, 2121, 2211.
		

Crossrefs

Row sums of A234574.
Main diagonal of A308292.

Programs

  • Maple
    b:= proc(n, k, i) option remember; `if`(k=0, 1,
         `if`(i<1, 0, add(b(n, k-j, i-1)/j!, j=0..min(k, n))))
        end:
    a:= n-> add(b(n, k, n)*k!, k=0..n^2):
    seq(a(n), n=0..10);
  • Mathematica
    Table[Sum[k!*SeriesCoefficient[Sum[x^j/j!, {j, 0, n}]^n, {x, 0, k}], {k, 0, n^2}], {n, 0, 10}] (* Vaclav Kotesovec, May 24 2020 *)
  • PARI
    {a(n) = sum(i=0, n^2, i!*polcoef(sum(j=0, n, x^j/j!)^n, i))} \\ Seiichi Manyama, May 19 2019

Formula

a(n) ~ exp(11/12) * n^(n^2 - n/2 + 1) / (2*Pi)^((n-1)/2). - Vaclav Kotesovec, May 24 2020

A034852 Rows of (Pascal's triangle - Losanitsch's triangle) (n >= 0, k >= 0).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 2, 2, 0, 0, 2, 4, 4, 2, 0, 0, 3, 6, 10, 6, 3, 0, 0, 3, 9, 16, 16, 9, 3, 0, 0, 4, 12, 28, 32, 28, 12, 4, 0, 0, 4, 16, 40, 60, 60, 40, 16, 4, 0, 0, 5, 20, 60, 100, 126, 100, 60, 20, 5, 0, 0, 5, 25, 80, 160, 226, 226, 160, 80, 25, 5, 0, 0, 6, 30, 110, 240
Offset: 0

Views

Author

Keywords

Comments

Also number of linear unbranched n-4-catafusenes of C_{2v} symmetry.
Number of n-bead black-white reversible strings with k black beads; also binary grids; string is not palindromic. - Yosu Yurramendi, Aug 08 2008
The first seven columns are A004526, A002620, A006584, A032091, A032092, A032093, A032094. Row sums give essentially A032085. - Yosu Yurramendi, Aug 08 2008
From Álvar Ibeas, Jun 01 2020: (Start)
T(n, k) is the sum of odd-degree coefficients of the Gaussian polynomial [n, k]_q. The area below a NE lattice path between (0,0) and (k, n-k) is even for A034851(n, k) paths and odd for T(n, k) of them.
For a (non-reversible) string of k black and n-k white beads, consider the minimum number of bead transpositions needed to place the black ones to the left and the white ones to the right (in other words, the number of inversions of the permutation obtained by labeling the black beads by integers 1,...,k and the white ones by k+1,...,n, in the same order they take on the string). It is even for A034851(n, k) strings and odd for T(n, k) cases.
(End)

Examples

			Triangle begins:
  0;
  0 0;
  0 1 0;
  0 1 1 0;
  0 2 2 2 0;
  0 2 4 4 2 0;
  ...
		

Crossrefs

Essentially the same as A034877.

Programs

  • Haskell
    a034852 n k = a034852_tabl !! n !! k
    a034852_row n = a034852_tabl !! n
    a034852_tabl = zipWith (zipWith (-)) a007318_tabl a034851_tabl
    -- Reinhard Zumkeller, Mar 24 2012
  • Mathematica
    nmax = 12; t[n_?EvenQ, k_?EvenQ] := (Binomial[n, k] - Binomial[n/2, k/2])/ 2; t[n_?EvenQ, k_?OddQ] := Binomial[n, k]/2; t[n_?OddQ, k_?EvenQ] := (Binomial[n, k] - Binomial[(n-1)/2, k/2])/2; t[n_?OddQ, k_?OddQ] := (Binomial[n, k] - Binomial[(n-1)/2, (k-1)/2])/2; Flatten[ Table[t[n, k], {n, 0, nmax}, {k, 0, n}]] (* Jean-François Alcover, Nov 15 2011, after Yosu Yurramendi *)

Formula

Equals (A007318-A051159)/2. - Yosu Yurramendi, Aug 08 2008
T(n, k) = T(n - 1, k - 1) + T(n - 1, k); except when n is even and k odd, in which case T(n, k) = A034851(n, k) = T(n - 1, k - 1) + A034841(n - 1, k) = A034841(n - 1, k - 1) + T(n - 1, k) = C(n, k) / 2. - Álvar Ibeas, Jun 01 2020

Extensions

More terms from James Sellers, May 04 2000
Showing 1-10 of 27 results. Next