cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Alexander Karpov

Alexander Karpov's wiki page.

Alexander Karpov has authored 7 sequences.

A307416 Number of narcissistic group-separable preference profiles.

Original entry on oeis.org

1, 1, 1, 6, 144, 13440, 4976640, 7390494720, 44033145569280, 1050540969012756480, 100246620373125798297600, 38247242364455762072803737600, 58346834889692144013481754807500800, 355946631376225773365104516210274756198400
Offset: 0

Author

Alexander Karpov, Apr 07 2019

Keywords

Programs

  • PARI
    a(n) = {j=1;if(n>1,j=sum(k=1,n-1,binomial(n-1, k-1)*2^(2*n*k-2*k^2-n)*a(k)*a(n-k)));j;} \\ Jinyuan Wang, Apr 08 2019

Formula

a(n) = Sum_{k=1..n-1} binomial(n-1, k-1)*2^(2*n*k-2*k^2-n)*a(k)*a(n-k).

Extensions

More terms from Jinyuan Wang, Apr 08 2019

A294085 a(n) is the number of self-symmetric anonymous and neutral equivalence classes of preference profiles with 3 alternatives and n agents (IANC model).

Original entry on oeis.org

1, 1, 3, 4, 8, 10, 17, 20, 30, 35, 49, 56, 75, 84, 108, 120, 150, 165, 202, 220, 264, 286, 338, 364, 425, 455, 525, 560, 640, 680, 771, 816, 918, 969, 1083, 1140, 1267, 1330, 1470, 1540, 1694, 1771, 1940, 2024, 2208, 2300, 2500, 2600, 2817, 2925, 3159, 3276, 3528, 3654, 3925
Offset: 0

Author

Alexander Karpov, Apr 12 2018

Keywords

Crossrefs

For odd n, it is A000292.

Programs

  • PARI
    Vec((1 + x^3 + x^4) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)*(1 + x + x^2)) + O(x^60)) \\ Colin Barker, May 11 2018

Formula

a(n) = 2*A005513(n-6) - A037240(n).
If n is odd, a(n) = (n+5)*(n+3)*(n+1)/48;
If n is even, a(n) = ceiling((n+4)^2*(n+2)/48).
From Colin Barker, May 11 2018: (Start)
G.f.: (1 + x^3 + x^4) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) + a(n-6) - a(n-7) - 2*a(n-8) + 2*a(n-9) + a(n-10) - a(n-11) for n>10.
(End)

A296506 Number of generalized knockout tournament seedings with 3 players in each match and n rounds.

Original entry on oeis.org

1, 280, 833712928048000000
Offset: 1

Author

Alexander Karpov, Dec 13 2017

Keywords

Comments

Next term is too large to include.

Crossrefs

Cf. A067667 (number of knockout tournament seedings with two players in each match).

Programs

  • Mathematica
    f[n_] := (3^n)!/6^((3^n - 1)/2); Array[f, 3] (* Robert G. Wilson v, Dec 27 2017 *)

Formula

a(n) = (3^n)!/6^((3^n-1)/2).

A296260 Number of preference profiles with 4 alternatives and n agents (IANC model).

Original entry on oeis.org

1, 1, 17, 111, 762, 4095, 19941, 84825, 329214, 1168740, 3858348, 11920740, 34773590, 96282900, 254473884, 644637204, 1571330916, 3697182450, 8421423582, 18615637950, 40023753924, 83859017814, 171530071362, 343059613650, 671825586021, 1289904147324, 2430974136780
Offset: 1

Author

Alexander Karpov, Dec 15 2017

Keywords

Crossrefs

Cf. A037240 for 3 alternatives.

Programs

  • Mathematica
    Array[Binomial[# + 23, 23]/24 + Which[Divisible[#1, 12], 3 Binomial[#1/2 + 11, 11]/8 + Binomial[#1/3 + 7, 7]/3 + Binomial[#1/4 + 5, 5]/4, MemberQ[{1, 5, 7, 11}, #2], 0, MemberQ[{2, 10}, #2], 3 Binomial[#1/2 + 11, 11]/8, MemberQ[{3, 9}, #2], Binomial[#1/3 + 7, 7]/3, MemberQ[{4, 8}, #2], 3 Binomial[#1/2 + 11, 11]/8 + Binomial[#1/4 + 5, 5]/4, True, 3 Binomial[#1/2 + 11, 11]/8 + Binomial[#1/3 + 7, 7]/3 ] & @@ {#, Mod[#, 12]} &, 26] (* Michael De Vlieger, Dec 18 2017 *)

Formula

if n == 0 mod 12, a(n) = C(n+23,23)/24 + C(n/2+11,11)*3/8 + C(n/3+7,7)/3+C(n/4+5,5)/4;
if n == 1,5,7,11 mod 12, a(n) = C(n+23,23)/24;
if n == 2,10 mod 12, a(n) = C(n+23,23)/24 + C(n/2+11,11)*3/8;
if n == 3,9 mod 12, a(n) = C(n+23,23)/24 + C(n/3+7,7)/3;
if n == 4,8 mod 12, a(n) = C(n+23,23)/24 + C(n/2+11,11)*3/8 +C(n/4+5,5)/4;
if n == 6 mod 12, a(n) = C(n+23,23)/24 + C(n/2+11,11)*3/8 + C(n/3+7,7)/3.

Extensions

More terms from Michael De Vlieger, Dec 18 2017

A289747 Erroneous version of A036981.

Original entry on oeis.org

1, 6, 720, 120960, 2264371200, 48920701648896000, 1570969121006520000000000000
Offset: 1

Author

Alexander Karpov, Jul 11 2017

Keywords

Comments

Previous incorrect name was "Number of round-robin tournament schedules with 2*n participants."

A261187 a(n) = (2^(n-1))!*y(n) where y(n)=1/2*(y(n-1))^2+1 for n>=2 and y(1)=1.

Original entry on oeis.org

1, 3, 51, 131355, 131953155208875, 5496027066067360087228913484456796875, 27805296606704951937976342299927372748633425216234990144120838935506416477839670037841796875
Offset: 1

Author

Alexander Karpov, Aug 11 2015

Keywords

Comments

a(n) is also the number of knockout tournament seedings that satisfy the symmetry property.

Crossrefs

Cf. A067667 (number of seedings).

Programs

  • Mathematica
    Table[(2^(n-1))!*FoldList[(1/2)*(#1)^2+1&,1,Range[2,7]][[n]],{n,1,7}] (* Ivan N. Ianakiev, Aug 25 2015 *)

A261125 a(n) = (2^(n-1))!*a(n-1) for n>=1, a(0) = 1.

Original entry on oeis.org

1, 1, 2, 48, 1935360, 40493130637639680000, 10654991354747516157752604498631700563938508800000000000
Offset: 0

Author

Alexander Karpov, Aug 09 2015

Keywords

Comments

The next term is too large to display.
The number of knockout tournament seedings that satisfy the delayed confrontation property.
a(n) is the number of permutations p of [2^n] such that {p(1),...,p(2^k)} = [2^k] for all k = 0..n: a(2) = 2: 1234, 1243. - Alois P. Heinz, Feb 04 2023

Crossrefs

Cf. A000722, A067667 (number of seedings).

Programs

  • Magma
    [n le 1 select n else Self(n-1)*Factorial(2^(n - 1)): n in [1..7]]; // Vincenzo Librandi, Aug 10 2015
    
  • Maple
    a:= proc(n) option remember:
          `if`(n=0, 1, a(n-1)*(2^(n-1))!)
        end:
    seq(a(n), n=0..6);  # Alois P. Heinz, Feb 04 2023
  • Mathematica
    RecurrenceTable[{a[1] == 1, a[n] == a[n-1] (2^(n - 1))!}, a, {n, 10}] (* Vincenzo Librandi, Aug 10 2015 *)
    FoldList[(2^#2)!*#1&,1,Range@6] (* Ivan N. Ianakiev, Aug 10 2015 *)
  • PARI
    first(m)=my(v=vector(m));v[1]=1;for(i=2,m,v[i]=(2^(i-1))!*v[i-1];);v; \\ Anders Hellström, Aug 10 2015

Formula

a(n) = Product_{j=0..n-1} (2^j)!. - Alois P. Heinz, Feb 04 2023

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 04 2023