cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A226391 a(n) = Sum_{k=0..n} binomial(k*n, k).

Original entry on oeis.org

1, 2, 9, 103, 2073, 58481, 2101813, 91492906, 4671050401, 273437232283, 18046800575211, 1325445408799007, 107200425419863009, 9466283137384124247, 906151826270369213655, 93459630239922214535911, 10331984296666203358431361, 1218745075041575200343722415
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 06 2013

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n*j,j): j in [0..n]]): n in [0..30]]; // G. C. Greubel, Aug 31 2022
    
  • Mathematica
    Table[Sum[Binomial[k*n, k], {k, 0, n}], {n, 0, 20}]
  • Maxima
    A226391(n):=sum(binomial(k*n,k), k,0,n); makelist(A226391(n),n,0,30); /* Martin Ettl, Jun 06 2013 */
    
  • SageMath
    @CachedFunction
    def A226391(n): return sum(binomial(n*j, j) for j in (0..n))
    [A226391(n) for n in (0..30)] # G. C. Greubel, Aug 31 2022

Formula

a(n) ~ binomial(n^2, n).

A361281 a(n) = n! * Sum_{k=0..n} binomial(n*k,n-k)/k!.

Original entry on oeis.org

1, 1, 5, 37, 481, 10001, 288901, 10820965, 511186817, 29843419681, 2106779832901, 176180844038981, 17165338119936865, 1924030148121500017, 245630480526435293381, 35409038825312233143301, 5719025066628373334423041, 1027649751647068260334391105
Offset: 0

Views

Author

Seiichi Manyama, Mar 06 2023

Keywords

Comments

From Peter Bala, Mar 12 2023: (Start)
It appears that a(n) == 1 (mod 4) and a(5*n+2) == 0 (mod 5) for all n. More generally we conjecture that a(n+k) == a(n) (mod k) for all n and k. If true, then for each k, the sequence a(n) taken modulo k is a periodic sequence and the period divides k.
Let F(x) and G(x) be power series with integer coefficients with G(0) = 1. Define b(n) = n! * [x^n] F(x)*exp(x*G(x)^n). Then we conjecture that b(n+k) == b(n) (mod k) for all n and k. The present sequence is the case F(x) = 1, G(x) = 1 + x. Cf. A278070. (End)

Crossrefs

Main diagonal of A361277.

Programs

  • PARI
    a(n) = n!*sum(k=0, n, binomial(n*k, n-k)/k!);

Formula

a(n) = n! * [x^n] exp(x * (1+x)^n).
log(a(n)) ~ n*(2*log(n) - log(log(n)) - 1 - log(2) + log(log(n))/log(n) + 1/(2*log(n)) + log(2)/log(n) - 1/(8*log(n)^2)). - Vaclav Kotesovec, Mar 12 2023

A096130 Triangle read by rows: T(n,k) = binomial(k*n,n), 1 <= k <= n.

Original entry on oeis.org

1, 1, 6, 1, 20, 84, 1, 70, 495, 1820, 1, 252, 3003, 15504, 53130, 1, 924, 18564, 134596, 593775, 1947792, 1, 3432, 116280, 1184040, 6724520, 26978328, 85900584, 1, 12870, 735471, 10518300, 76904685, 377348994, 1420494075, 4426165368, 1, 48620, 4686825, 94143280, 886163135, 5317936260, 23667689815, 85113005120, 260887834350
Offset: 1

Views

Author

Amarnath Murthy, Jul 04 2004

Keywords

Examples

			Triangle begins:
  1;
  1,   6;
  1,  20,   84;
  1,  70,  495,  1820;
  1, 252, 3003, 15504, 53130;
  ...
		

Crossrefs

Row-sums give A096131. The leading diagonal is A014062. Cf. A096131.
Cf. A007318.

Programs

  • GAP
    Flat(List([1..10],n->List([1..n],k->Binomial(k*n,n)))); # Muniru A Asiru, Aug 12 2018
  • Maple
    a:=(n,k)->binomial(k*n,n): seq(seq(a(n,k),k=1..n),n=1..10); # Muniru A Asiru, Aug 12 2018
  • PARI
    tabl(nrows) = {for (n=1, nrows, for (k=1, n, print1(binomial(k*n, n), ", ");); print(););} \\ Michel Marcus, May 14 2013
    

Formula

T(n, 1) = 1;
T(n, 2) = A000984(n) for n > 1;
T(n, 3) = A005809(n) for n > 2;
T(n, 4) = A005810(n) for n > 3;
T(n, n) = A014062(n).

Extensions

Corrected and extended by Reinhard Zumkeller, Jan 09 2005

A336513 a(n) = Sum_{i=1..n} Product_{j=(i-1)*n+1..i*n} j.

Original entry on oeis.org

1, 14, 630, 57264, 8626800, 1940869440, 609372212400, 254507088084480, 136432540607489280, 91303132805512992000, 74605774050426543724800, 73097485140038735163110400, 84588938888439008795675904000, 114144070365165930162064530739200, 177648727691418999798103189989120000
Offset: 1

Views

Author

Seiichi Manyama, Jul 23 2020

Keywords

Examples

			a(2) = 1*2 + 3*4 = 14.
a(3) = 1*2*3 + 4*5*6 + 7*8*9 = 630.
a(4) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15*16 = 57264.
		

Crossrefs

Main diagonal of A333446.

Programs

  • Mathematica
    a[n_] := n! * Sum[Binomial[k*n, n], {k, 1, n}]; Array[a, 15] (* Amiram Eldar, May 01 2021 *)
  • PARI
    {a(n) = sum(i=1, n, prod(j=(i-1)*n+1,i*n, j))}

Formula

a(n) = n! * A096131(n) = n! * Sum_{k=1..n} binomial(k*n, n).

A349470 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(k*n,n).

Original entry on oeis.org

1, 1, 5, 65, 1394, 40378, 1470972, 64575585, 3315911300, 194921240846, 12905391110105, 950172113032181, 77000666619646717, 6810514097879311450, 652810277600420281734, 67407087759052608218945, 7459157975936646185855880, 880616251774021869817185430
Offset: 0

Views

Author

Seiichi Manyama, Nov 19 2021

Keywords

Examples

			a(1) = (1/1!) * (1) = 1.
a(2) = (1/2!) * (-1*2 + 3*4) = 5.
a(3) = (1/3!) * (1*2*3 - 4*5*6 + 7*8*9) = 65.
a(4) = (1/4!) * (-1*2*3*4 + 5*6*7*8 - 9*10*11*12 + 13*14*15*16) = 1394.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(n - k) * Binomial[k*n, n], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Nov 19 2021 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(k*n, n));
    
  • PARI
    a(n) = sum(j=0, n, (-1)^(n-j)*prod(k=(j-1)*n+1, j*n, k))/n!;

Formula

a(n) = (1/n!) * Sum_{j=0..n} (-1)^(n-j) * Product_{k=(j-1)*n+1..j*n} k.
a(n) ~ exp(n + 1/2) * n^(n - 1/2) / (sqrt(2*Pi) * (1 + exp(1))). - Vaclav Kotesovec, Nov 20 2021

A029848 a(n) = 1 + C(2*n,n) + C(3*n,n).

Original entry on oeis.org

3, 6, 22, 105, 566, 3256, 19489, 119713, 748342, 4735446, 30229772, 194242153, 1254381857, 8132826045, 52900345681, 345022543105, 2255449994038, 14773402692946, 96935423713906, 637019314585501, 4191982352334316, 27619973660237476, 182185272080724121, 1202945209263916561
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([0..20],n->1+Binomial(2*n,n)+Binomial(3*n,n)); # Muniru A Asiru, Aug 12 2018
  • Maple
    a:=n->1+binomial(2*n,n)+binomial(3*n,n): seq(a(n),n=0..20); # Muniru A Asiru, Aug 12 2018
  • Mathematica
    Table[1+Binomial[2n,n]+Binomial[3n,n],{n,0,30}] (* Harvey P. Dale, Jan 09 2019 *)
  • PARI
    a(n) = 1 + binomial(2*n, n) + binomial(3*n, n); \\ Michel Marcus, Aug 12 2018
    

Formula

G.f.: 1/(1-x)+1/sqrt(1-4*x)+cos(arcsin((3^(3/2)*sqrt(x))/2)/3)/sqrt(1-(27*x)/4). - Vladimir Kruchinin, Aug 07 2025

A275779 a(n) = (2^(n^2) - 1)/(1 - 1/2^n).

Original entry on oeis.org

2, 20, 584, 69904, 34636832, 69810262080, 567382630219904, 18519084246547628288, 2422583247133816584929792, 1268889750375080065623288448000, 2659754699919401766201267083003561984, 22306191045953951743035482794815064402563072
Offset: 1

Views

Author

Olivier Gérard, Aug 08 2016

Keywords

Comments

Sum of the geometric progression of ratio 2^n.
Number of all partial binary matrices with rows of length n: A partial binary matrix has 1<=k<=n rows of length n. The number of different partial matrices with k rows is 2^(k*n). a(n) is the sum for k between 1 and n.

Crossrefs

Cf. A128889 (accepting the null matrix and excluding the full n*n matrices)

Programs

  • Mathematica
    Table[(2^(n^2) - 1)/(1 - 1/2^n), {n, 1, 10}]
  • PARI
    a(n) = {(2^(n^2) - 1)/(1 - 1/2^n)} \\ Andrew Howroyd, Apr 26 2020

Formula

a(n) = Sum_{k=1..n} 2^(k*n).

Extensions

Terms a(11) and beyond from Andrew Howroyd, Apr 26 2020

A323663 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals, where A(n,k) is Sum_{j=1..n} binomial(j*k, k).

Original entry on oeis.org

1, 1, 3, 1, 7, 6, 1, 21, 22, 10, 1, 71, 105, 50, 15, 1, 253, 566, 325, 95, 21, 1, 925, 3256, 2386, 780, 161, 28, 1, 3433, 19489, 18760, 7231, 1596, 252, 36, 1, 12871, 119713, 154085, 71890, 17857, 2926, 372, 45, 1, 48621, 748342, 1303753, 747860, 214396, 38332, 4950, 525, 55
Offset: 1

Views

Author

Seiichi Manyama, Jan 23 2019

Keywords

Examples

			Square array begins:
    1,   1,    1,     1,       1,        1, ...
    3,   7,   21,    71,     253,      925, ...
    6,  22,  105,   566,    3256,    19489, ...
   10,  50,  325,  2386,   18760,   154085, ...
   15,  95,  780,  7231,   71890,   747860, ...
   21, 161, 1596, 17857,  214396,  2695652, ...
   28, 252, 2926, 38332,  539028,  7941438, ...
   36, 372, 4950, 74292, 1197036, 20212950, ...
		

Crossrefs

Columns 1-3 give A000217, A002412, A116689.
Rows 1-3 give A000012, A244174, A029848.
Main diagonal is A096131.
Cf. A060539.

A359842 a(n) = Sum_{k=0..n} binomial(n*k,n+k).

Original entry on oeis.org

1, 0, 1, 90, 13690, 3443275, 1308315371, 701623884514, 505274768721332, 470638793249281593, 550707386335951810915, 790898932162231992184327, 1367864138835420575101044139, 2804370191530797723173615407860, 6725366044028696102055907486691290
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 15 2023

Keywords

Crossrefs

Programs

  • Maple
    a := proc (n) option remember; add(binomial(n*k, n+k), k = 0..n) end:
    seq(a(n), n = 0..20); # Peter Bala, Jan 16 2023
  • Mathematica
    Table[Sum[Binomial[n*k, n+k], {k, 0, n}], {n, 0, 20}]

Formula

a(n) ~ binomial(n^2,2*n).
a(n) ~ exp(2*n-2) * n^(2*n - 1/2) / (sqrt(Pi) * 2^(2*n+1)).
From Peter Bala, Jan 19 2023: (Start)
Conjectures: a(2^k) == 0 (mod 2^(k-1)) and a(3^k) == 0 (mod 3^(k+2)) for k >= 2; a(p^k) == 0 (mod p^(k+1)) for all primes p >= 5.
Let m be a positive integer. Similar recurrences may hold for the sequence whose n-th term is given by Sum_{k = 0..n} binomial(m*n*k, n+k). Cf. A099237. (End)

A096132 Triangle read by rows in which the r-th term of the n-th row is C(n^r,r*n), where r = 1 to n.

Original entry on oeis.org

1, 1, 1, 1, 84, 4686825, 1, 12870, 3284214703056, 10078751602022313874633200, 1, 3268760, 9064807833193439800, 25006639164538285144538957539300707000, 137658555538877668586244095134027016988748997970545868021484500, 1
Offset: 1

Views

Author

Amarnath Murthy, Jul 04 2004

Keywords

Examples

			1
1 1
1 84 4686825
1 12870 3284214703056 = C(256,16) 10078751602022313874633200
1 3268760 9064807833193439800 25006639164538285144538957539300707000 ...
...
		

Crossrefs

Programs

  • Mathematica
    Flatten[ Table[ Binomial[n^r, r*n], {n, 6}, {r, n}]] (* Robert G. Wilson v, Jul 08 2004 *)

Extensions

Edited, corrected and extended by Robert G. Wilson v, Jul 08 2004
Showing 1-10 of 10 results.