A226391
a(n) = Sum_{k=0..n} binomial(k*n, k).
Original entry on oeis.org
1, 2, 9, 103, 2073, 58481, 2101813, 91492906, 4671050401, 273437232283, 18046800575211, 1325445408799007, 107200425419863009, 9466283137384124247, 906151826270369213655, 93459630239922214535911, 10331984296666203358431361, 1218745075041575200343722415
Offset: 0
-
[(&+[Binomial(n*j,j): j in [0..n]]): n in [0..30]]; // G. C. Greubel, Aug 31 2022
-
Table[Sum[Binomial[k*n, k], {k, 0, n}], {n, 0, 20}]
-
A226391(n):=sum(binomial(k*n,k), k,0,n); makelist(A226391(n),n,0,30); /* Martin Ettl, Jun 06 2013 */
-
@CachedFunction
def A226391(n): return sum(binomial(n*j, j) for j in (0..n))
[A226391(n) for n in (0..30)] # G. C. Greubel, Aug 31 2022
A361281
a(n) = n! * Sum_{k=0..n} binomial(n*k,n-k)/k!.
Original entry on oeis.org
1, 1, 5, 37, 481, 10001, 288901, 10820965, 511186817, 29843419681, 2106779832901, 176180844038981, 17165338119936865, 1924030148121500017, 245630480526435293381, 35409038825312233143301, 5719025066628373334423041, 1027649751647068260334391105
Offset: 0
A096130
Triangle read by rows: T(n,k) = binomial(k*n,n), 1 <= k <= n.
Original entry on oeis.org
1, 1, 6, 1, 20, 84, 1, 70, 495, 1820, 1, 252, 3003, 15504, 53130, 1, 924, 18564, 134596, 593775, 1947792, 1, 3432, 116280, 1184040, 6724520, 26978328, 85900584, 1, 12870, 735471, 10518300, 76904685, 377348994, 1420494075, 4426165368, 1, 48620, 4686825, 94143280, 886163135, 5317936260, 23667689815, 85113005120, 260887834350
Offset: 1
Triangle begins:
1;
1, 6;
1, 20, 84;
1, 70, 495, 1820;
1, 252, 3003, 15504, 53130;
...
-
Flat(List([1..10],n->List([1..n],k->Binomial(k*n,n)))); # Muniru A Asiru, Aug 12 2018
-
a:=(n,k)->binomial(k*n,n): seq(seq(a(n,k),k=1..n),n=1..10); # Muniru A Asiru, Aug 12 2018
-
tabl(nrows) = {for (n=1, nrows, for (k=1, n, print1(binomial(k*n, n), ", ");); print(););} \\ Michel Marcus, May 14 2013
A336513
a(n) = Sum_{i=1..n} Product_{j=(i-1)*n+1..i*n} j.
Original entry on oeis.org
1, 14, 630, 57264, 8626800, 1940869440, 609372212400, 254507088084480, 136432540607489280, 91303132805512992000, 74605774050426543724800, 73097485140038735163110400, 84588938888439008795675904000, 114144070365165930162064530739200, 177648727691418999798103189989120000
Offset: 1
a(2) = 1*2 + 3*4 = 14.
a(3) = 1*2*3 + 4*5*6 + 7*8*9 = 630.
a(4) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15*16 = 57264.
-
a[n_] := n! * Sum[Binomial[k*n, n], {k, 1, n}]; Array[a, 15] (* Amiram Eldar, May 01 2021 *)
-
{a(n) = sum(i=1, n, prod(j=(i-1)*n+1,i*n, j))}
A349470
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(k*n,n).
Original entry on oeis.org
1, 1, 5, 65, 1394, 40378, 1470972, 64575585, 3315911300, 194921240846, 12905391110105, 950172113032181, 77000666619646717, 6810514097879311450, 652810277600420281734, 67407087759052608218945, 7459157975936646185855880, 880616251774021869817185430
Offset: 0
a(1) = (1/1!) * (1) = 1.
a(2) = (1/2!) * (-1*2 + 3*4) = 5.
a(3) = (1/3!) * (1*2*3 - 4*5*6 + 7*8*9) = 65.
a(4) = (1/4!) * (-1*2*3*4 + 5*6*7*8 - 9*10*11*12 + 13*14*15*16) = 1394.
-
a[n_] := Sum[(-1)^(n - k) * Binomial[k*n, n], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Nov 19 2021 *)
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(k*n, n));
-
a(n) = sum(j=0, n, (-1)^(n-j)*prod(k=(j-1)*n+1, j*n, k))/n!;
A029848
a(n) = 1 + C(2*n,n) + C(3*n,n).
Original entry on oeis.org
3, 6, 22, 105, 566, 3256, 19489, 119713, 748342, 4735446, 30229772, 194242153, 1254381857, 8132826045, 52900345681, 345022543105, 2255449994038, 14773402692946, 96935423713906, 637019314585501, 4191982352334316, 27619973660237476, 182185272080724121, 1202945209263916561
Offset: 0
-
List([0..20],n->1+Binomial(2*n,n)+Binomial(3*n,n)); # Muniru A Asiru, Aug 12 2018
-
a:=n->1+binomial(2*n,n)+binomial(3*n,n): seq(a(n),n=0..20); # Muniru A Asiru, Aug 12 2018
-
Table[1+Binomial[2n,n]+Binomial[3n,n],{n,0,30}] (* Harvey P. Dale, Jan 09 2019 *)
-
a(n) = 1 + binomial(2*n, n) + binomial(3*n, n); \\ Michel Marcus, Aug 12 2018
A275779
a(n) = (2^(n^2) - 1)/(1 - 1/2^n).
Original entry on oeis.org
2, 20, 584, 69904, 34636832, 69810262080, 567382630219904, 18519084246547628288, 2422583247133816584929792, 1268889750375080065623288448000, 2659754699919401766201267083003561984, 22306191045953951743035482794815064402563072
Offset: 1
Cf.
A128889 (accepting the null matrix and excluding the full n*n matrices)
-
Table[(2^(n^2) - 1)/(1 - 1/2^n), {n, 1, 10}]
-
a(n) = {(2^(n^2) - 1)/(1 - 1/2^n)} \\ Andrew Howroyd, Apr 26 2020
A323663
Square array A(n,k), n >= 1, k >= 1, read by antidiagonals, where A(n,k) is Sum_{j=1..n} binomial(j*k, k).
Original entry on oeis.org
1, 1, 3, 1, 7, 6, 1, 21, 22, 10, 1, 71, 105, 50, 15, 1, 253, 566, 325, 95, 21, 1, 925, 3256, 2386, 780, 161, 28, 1, 3433, 19489, 18760, 7231, 1596, 252, 36, 1, 12871, 119713, 154085, 71890, 17857, 2926, 372, 45, 1, 48621, 748342, 1303753, 747860, 214396, 38332, 4950, 525, 55
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, ...
3, 7, 21, 71, 253, 925, ...
6, 22, 105, 566, 3256, 19489, ...
10, 50, 325, 2386, 18760, 154085, ...
15, 95, 780, 7231, 71890, 747860, ...
21, 161, 1596, 17857, 214396, 2695652, ...
28, 252, 2926, 38332, 539028, 7941438, ...
36, 372, 4950, 74292, 1197036, 20212950, ...
A359842
a(n) = Sum_{k=0..n} binomial(n*k,n+k).
Original entry on oeis.org
1, 0, 1, 90, 13690, 3443275, 1308315371, 701623884514, 505274768721332, 470638793249281593, 550707386335951810915, 790898932162231992184327, 1367864138835420575101044139, 2804370191530797723173615407860, 6725366044028696102055907486691290
Offset: 0
-
a := proc (n) option remember; add(binomial(n*k, n+k), k = 0..n) end:
seq(a(n), n = 0..20); # Peter Bala, Jan 16 2023
-
Table[Sum[Binomial[n*k, n+k], {k, 0, n}], {n, 0, 20}]
A096132
Triangle read by rows in which the r-th term of the n-th row is C(n^r,r*n), where r = 1 to n.
Original entry on oeis.org
1, 1, 1, 1, 84, 4686825, 1, 12870, 3284214703056, 10078751602022313874633200, 1, 3268760, 9064807833193439800, 25006639164538285144538957539300707000, 137658555538877668586244095134027016988748997970545868021484500, 1
Offset: 1
1
1 1
1 84 4686825
1 12870 3284214703056 = C(256,16) 10078751602022313874633200
1 3268760 9064807833193439800 25006639164538285144538957539300707000 ...
...
-
Flatten[ Table[ Binomial[n^r, r*n], {n, 6}, {r, n}]] (* Robert G. Wilson v, Jul 08 2004 *)
Showing 1-10 of 10 results.
Comments