cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A096131 Sum of the terms of the n-th row of triangle pertaining to A096130.

Original entry on oeis.org

1, 7, 105, 2386, 71890, 2695652, 120907185, 6312179764, 375971507406, 25160695768715, 1869031937691061, 152603843369288819, 13584174777196666630, 1309317592648179024666, 135850890740575408906465
Offset: 1

Views

Author

Amarnath Murthy, Jul 04 2004

Keywords

Comments

The product of the terms of the n-th row is given by A034841.
Collection of partial binary matrices: 1 to n rows of length n and a total of n entries set to one in each partial matrix. - Olivier Gérard, Aug 08 2016

Examples

			From _Seiichi Manyama_, Aug 18 2018: (Start)
a(1) = (1/1!) * (1) = 1.
a(2) = (1/2!) * (1*2 + 3*4) = 7.
a(3) = (1/3!) * (1*2*3 + 4*5*6 + 7*8*9) = 105.
a(4) = (1/4!) * (1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15*16) = 2386. (End)
		

Crossrefs

Programs

  • GAP
    List(List([1..20],n->List([1..n],k->Binomial(k*n,n))),Sum); # Muniru A Asiru, Aug 12 2018
    
  • Maple
    A096130 := proc(n,k) binomial(k*n,n) ; end: A096131 := proc(n) local k; add( A096130(n,k),k=1..n) ; end: for n from 1 to 18 do printf("%d, ",A096131(n)) ; od ; # R. J. Mathar, Apr 30 2007
    seq(add((binomial(n*k,n)), k=0..n), n=1..15); # Zerinvary Lajos, Sep 16 2007
  • Mathematica
    Table[Sum[Binomial[k*n, n], {k, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Jun 06 2013 *)
  • PARI
    a(n) = sum(k=1, n, binomial(k*n, n)); \\ Michel Marcus, Aug 20 2018

Formula

a(n) = Sum_{k=1..n} binomial(k*n, n). - Reinhard Zumkeller, Jan 09 2005
a(n) = (1/n!) * Sum_{j=1..n} Product_{i=n*(j-1)+1..n*j} i. - Reinhard Zumkeller, Jan 09 2005 [corrected by Seiichi Manyama, Aug 17 2018]
a(n) ~ exp(1)/(exp(1)-1) * binomial(n^2,n). - Vaclav Kotesovec, Jun 06 2013

Extensions

More terms from R. J. Mathar, Apr 30 2007
Edited by N. J. A. Sloane, Sep 06 2008 at the suggestion of R. J. Mathar

A361281 a(n) = n! * Sum_{k=0..n} binomial(n*k,n-k)/k!.

Original entry on oeis.org

1, 1, 5, 37, 481, 10001, 288901, 10820965, 511186817, 29843419681, 2106779832901, 176180844038981, 17165338119936865, 1924030148121500017, 245630480526435293381, 35409038825312233143301, 5719025066628373334423041, 1027649751647068260334391105
Offset: 0

Views

Author

Seiichi Manyama, Mar 06 2023

Keywords

Comments

From Peter Bala, Mar 12 2023: (Start)
It appears that a(n) == 1 (mod 4) and a(5*n+2) == 0 (mod 5) for all n. More generally we conjecture that a(n+k) == a(n) (mod k) for all n and k. If true, then for each k, the sequence a(n) taken modulo k is a periodic sequence and the period divides k.
Let F(x) and G(x) be power series with integer coefficients with G(0) = 1. Define b(n) = n! * [x^n] F(x)*exp(x*G(x)^n). Then we conjecture that b(n+k) == b(n) (mod k) for all n and k. The present sequence is the case F(x) = 1, G(x) = 1 + x. Cf. A278070. (End)

Crossrefs

Main diagonal of A361277.

Programs

  • PARI
    a(n) = n!*sum(k=0, n, binomial(n*k, n-k)/k!);

Formula

a(n) = n! * [x^n] exp(x * (1+x)^n).
log(a(n)) ~ n*(2*log(n) - log(log(n)) - 1 - log(2) + log(log(n))/log(n) + 1/(2*log(n)) + log(2)/log(n) - 1/(8*log(n)^2)). - Vaclav Kotesovec, Mar 12 2023

A295772 a(n) = Sum_{k=0..n} binomial((n-k)*k, k).

Original entry on oeis.org

1, 1, 2, 4, 11, 41, 189, 1020, 6277, 43262, 328963, 2727076, 24425913, 234743744, 2406904525, 26202132494, 301579542517, 3656552470482, 46555182556971, 620695577790512, 8644238847922949, 125472134647552497, 1894393648378487895, 29696659293381522674
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 27 2017

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 11*x^4 + 41*x^5 + 189*x^6 + 1020*x^7 + 6277*x^8 + 43262*x^9 + 328963*x^10 + ...
		

Crossrefs

Programs

  • Maple
    seq(add(binomial((n-k)*k,k),k=0..n),n=0..30); # Robert Israel, Nov 27 2017
  • Mathematica
    Table[Sum[Binomial[(n-k)*k, k], {k, 0, n}], {n, 0, 30}]

Formula

log(a(n)) ~ n*(log(n) - log(log(n)) + (log(log(n)) - 1)/log(n)). - Vaclav Kotesovec, Jan 10 2023
G.f. A(x) = 1 + x*Sum_{n>=0} x^n/n! * ( d^n/dy^n (1+y)^n/(1 - x*(1+y)^n) ) evaluated at y = 0. - Paul D. Hanna, Nov 13 2024

A295773 a(n) = Sum_{k=0..n} binomial(k^2, k).

Original entry on oeis.org

1, 2, 8, 92, 1912, 55042, 2002834, 87903418, 4514068786, 265401903136, 17575711359576, 1294325676386112, 104913619501093500, 9281271920245432932, 889811788303594625412, 91895379599481072720852, 10170646981621794947354052, 1200909691326112843842751962
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 27 2017

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(k^2, k): k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Jan 10 2019
  • Mathematica
    Table[Sum[Binomial[k^2, k], {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = sum(k=0, n, binomial(k^2, k)); \\ Michel Marcus, Jan 10 2019
    

Formula

a(n) ~ exp(n - 1/2) * n^(n - 1/2) / sqrt(2*Pi).

A349471 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(k*n,k).

Original entry on oeis.org

1, 0, 5, 71, 1625, 48699, 1815157, 80960200, 4205895521, 249447427145, 16631893722851, 1231521399730489, 100270564101729529, 8903719880410535595, 856322102196977446955, 88677383473792696758599, 9837660365763014667911553, 1163993530309417488368300653
Offset: 0

Views

Author

Seiichi Manyama, Nov 19 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(n - k) * Binomial[k*n, k], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Nov 19 2021 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(k*n, k));

Formula

a(n) ~ exp(n - 1/2) * n^(n - 1/2) / sqrt(2*Pi). - Vaclav Kotesovec, Nov 20 2021

A358146 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} binomial(k*j,j).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 9, 4, 1, 1, 5, 19, 29, 5, 1, 1, 6, 33, 103, 99, 6, 1, 1, 7, 51, 253, 598, 351, 7, 1, 1, 8, 73, 506, 2073, 3601, 1275, 8, 1, 1, 9, 99, 889, 5351, 17577, 22165, 4707, 9, 1, 1, 10, 129, 1429, 11515, 58481, 152173, 138445, 17577, 10, 1
Offset: 0

Views

Author

Seiichi Manyama, Oct 31 2022

Keywords

Examples

			Square array begins:
  1, 1,   1,    1,     1,     1, ...
  1, 2,   3,    4,     5,     6, ...
  1, 3,   9,   19,    33,    51, ...
  1, 4,  29,  103,   253,   506, ...
  1, 5,  99,  598,  2073,  5351, ...
  1, 6, 351, 3601, 17577, 58481, ...
		

Crossrefs

Columns k=0-5 give: A000012, A001477(n+1), A006134, A188675, A225612, A225615.
Main diagonal gives A226391.
Cf. A358050.

Programs

  • PARI
    T(n, k) = sum(j=0, n, binomial(k*j, j));

A359842 a(n) = Sum_{k=0..n} binomial(n*k,n+k).

Original entry on oeis.org

1, 0, 1, 90, 13690, 3443275, 1308315371, 701623884514, 505274768721332, 470638793249281593, 550707386335951810915, 790898932162231992184327, 1367864138835420575101044139, 2804370191530797723173615407860, 6725366044028696102055907486691290
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 15 2023

Keywords

Crossrefs

Programs

  • Maple
    a := proc (n) option remember; add(binomial(n*k, n+k), k = 0..n) end:
    seq(a(n), n = 0..20); # Peter Bala, Jan 16 2023
  • Mathematica
    Table[Sum[Binomial[n*k, n+k], {k, 0, n}], {n, 0, 20}]

Formula

a(n) ~ binomial(n^2,2*n).
a(n) ~ exp(2*n-2) * n^(2*n - 1/2) / (sqrt(Pi) * 2^(2*n+1)).
From Peter Bala, Jan 19 2023: (Start)
Conjectures: a(2^k) == 0 (mod 2^(k-1)) and a(3^k) == 0 (mod 3^(k+2)) for k >= 2; a(p^k) == 0 (mod p^(k+1)) for all primes p >= 5.
Let m be a positive integer. Similar recurrences may hold for the sequence whose n-th term is given by Sum_{k = 0..n} binomial(m*n*k, n+k). Cf. A099237. (End)

A383120 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n*k,k).

Original entry on oeis.org

1, 2, 11, 139, 2885, 82381, 2979565, 130203494, 6664589321, 390857822425, 25832193906761, 1899273577364197, 153741850998047053, 13585520026454056279, 1301210398133681268381, 134270617908678099820891, 14849785991790603714043921, 1752283118795349858851381297
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 17 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k] Binomial[n k, k], {k, 0, n}], {n, 0, 17}]
  • PARI
    a(n) = sum(k=0, n, binomial(n,k) * binomial(n*k,k)); \\ Michel Marcus, Apr 17 2025

Formula

a(n) = [x^n] ((1 + x)^n + x)^n.
a(n) ~ exp(n + exp(-1) - 1/2) * n^n / sqrt(2*Pi*n). - Vaclav Kotesovec, Apr 17 2025
Showing 1-8 of 8 results.