A096131 Sum of the terms of the n-th row of triangle pertaining to A096130.
1, 7, 105, 2386, 71890, 2695652, 120907185, 6312179764, 375971507406, 25160695768715, 1869031937691061, 152603843369288819, 13584174777196666630, 1309317592648179024666, 135850890740575408906465
Offset: 1
Keywords
Examples
From _Seiichi Manyama_, Aug 18 2018: (Start) a(1) = (1/1!) * (1) = 1. a(2) = (1/2!) * (1*2 + 3*4) = 7. a(3) = (1/3!) * (1*2*3 + 4*5*6 + 7*8*9) = 105. a(4) = (1/4!) * (1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15*16) = 2386. (End)
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..338
Crossrefs
Programs
-
GAP
List(List([1..20],n->List([1..n],k->Binomial(k*n,n))),Sum); # Muniru A Asiru, Aug 12 2018
-
Maple
A096130 := proc(n,k) binomial(k*n,n) ; end: A096131 := proc(n) local k; add( A096130(n,k),k=1..n) ; end: for n from 1 to 18 do printf("%d, ",A096131(n)) ; od ; # R. J. Mathar, Apr 30 2007 seq(add((binomial(n*k,n)), k=0..n), n=1..15); # Zerinvary Lajos, Sep 16 2007
-
Mathematica
Table[Sum[Binomial[k*n, n], {k, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Jun 06 2013 *)
-
PARI
a(n) = sum(k=1, n, binomial(k*n, n)); \\ Michel Marcus, Aug 20 2018
Formula
a(n) = Sum_{k=1..n} binomial(k*n, n). - Reinhard Zumkeller, Jan 09 2005
a(n) = (1/n!) * Sum_{j=1..n} Product_{i=n*(j-1)+1..n*j} i. - Reinhard Zumkeller, Jan 09 2005 [corrected by Seiichi Manyama, Aug 17 2018]
a(n) ~ exp(1)/(exp(1)-1) * binomial(n^2,n). - Vaclav Kotesovec, Jun 06 2013
Extensions
More terms from R. J. Mathar, Apr 30 2007
Edited by N. J. A. Sloane, Sep 06 2008 at the suggestion of R. J. Mathar
Comments