A278070 a(n) = hypergeometric([n, -n], [], -1).
1, 2, 11, 106, 1457, 25946, 566827, 14665106, 438351041, 14862109042, 563501581931, 23624177026682, 1085079390005041, 54185293223976266, 2922842896378005707, 169366580127359119906, 10492171932362920604417, 691986726674000405367266, 48408260338825019327539531
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..370
Programs
-
Maple
a := n -> hypergeom([n, -n], [], -1): seq(simplify(a(n)), n=0..18); # Alternatively: a := proc(n) option remember; `if`(n<2, n+1, ((2*n-1)*a(n-2) + 4*(n*(2*n-4)+1)*a(n-1))/(2*n-3)) end: seq(a(n), n=0..18);
-
Mathematica
Table[HypergeometricPFQ[{n, -n}, {}, -1], {n, 0, 20}] (* Vaclav Kotesovec, Nov 10 2016 *)
-
Maxima
a(n):=n!*sum(binomial(2*n-i-1,n-i)/i!,i,0,n); /* Vladimir Kruchinin, Nov 23 2016 */
-
Sage
def a(): a, b, c, d, h, e = 1, 2, 1, 8, 4, 0 yield a while True: yield b e = c; c += 2 a, b = b, (c*a + h*b)//e d += 16; h += d A278070 = a() [next(A278070) for _ in range(19)]
Formula
a(-n) = a(n).
a(n) = n! [x^n] exp((1-h(x))/2)*(1+h(x))/(2*h(x)) with h(x) = sqrt(1-4*x).
a(n) = ((2*n-1)*a(n-2) + 4*(n*(2*n-4)+1)*a(n-1))/(2*n-3) for n>=2.
a(n) ~ 2^(2*n-1/2) * n^n / exp(n-1/2). - Vaclav Kotesovec, Nov 10 2016
a(n) = n!*Sum_{i=0..n}(binomial(2*n-i-1,n-i)/i!). - Vladimir Kruchinin, Nov 23 2016
a(n) = n! * [x^n] exp(x)/(1 - x)^n. - Ilya Gutkovskiy, Sep 21 2017
Comments