cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A278070 a(n) = hypergeometric([n, -n], [], -1).

Original entry on oeis.org

1, 2, 11, 106, 1457, 25946, 566827, 14665106, 438351041, 14862109042, 563501581931, 23624177026682, 1085079390005041, 54185293223976266, 2922842896378005707, 169366580127359119906, 10492171932362920604417, 691986726674000405367266, 48408260338825019327539531
Offset: 0

Views

Author

Peter Luschny, Nov 10 2016

Keywords

Comments

From Peter Bala, Mar 12 2023: (Start)
We conjecture that a(n+k) == a(n) (mod k) for all n and k. If true, then for each k, the sequence a(n) taken modulo k is a periodic sequence and the period divides k. For example, modulo 7 the sequence becomes [1, 2, 4, 1, 1, 4, 2, 1, 2, 4, 1, 1, 4, 2, ...], apparently a periodic sequence of period 7.
More generally, let F(x) and G(x) denote power series with integer coefficients with F(0) = G(0) = 1. Define b(n) = n! * [x^n] exp(x*G(x))*F(x)^n. Then we conjecture that b(n+k) == b(n) (mod k) for all n and k. The present sequence is the case F(x) = 1/(1 - x), G(x) = 1. Cf. A361281. (End)

Crossrefs

Programs

  • Maple
    a := n -> hypergeom([n, -n], [], -1): seq(simplify(a(n)), n=0..18);
    # Alternatively:
    a := proc(n) option remember; `if`(n<2, n+1,
    ((2*n-1)*a(n-2) + 4*(n*(2*n-4)+1)*a(n-1))/(2*n-3)) end:
    seq(a(n), n=0..18);
  • Mathematica
    Table[HypergeometricPFQ[{n, -n}, {}, -1], {n, 0, 20}] (* Vaclav Kotesovec, Nov 10 2016 *)
  • Maxima
    a(n):=n!*sum(binomial(2*n-i-1,n-i)/i!,i,0,n); /* Vladimir Kruchinin, Nov 23 2016 */
  • Sage
    def a():
        a, b, c, d, h, e = 1, 2, 1, 8, 4, 0
        yield a
        while True:
            yield b
            e = c; c += 2
            a, b = b, (c*a + h*b)//e
            d += 16; h += d
    A278070 = a()
    [next(A278070) for _ in range(19)]
    

Formula

a(-n) = a(n).
a(n) = n! [x^n] exp((1-h(x))/2)*(1+h(x))/(2*h(x)) with h(x) = sqrt(1-4*x).
a(n) = ((2*n-1)*a(n-2) + 4*(n*(2*n-4)+1)*a(n-1))/(2*n-3) for n>=2.
a(n) ~ 2^(2*n-1/2) * n^n / exp(n-1/2). - Vaclav Kotesovec, Nov 10 2016
a(n) = n!*Sum_{i=0..n}(binomial(2*n-i-1,n-i)/i!). - Vladimir Kruchinin, Nov 23 2016
a(n) = n! * [x^n] exp(x)/(1 - x)^n. - Ilya Gutkovskiy, Sep 21 2017

A293013 a(n) = n! * [x^n] exp(x/(1 - x)^n).

Original entry on oeis.org

1, 1, 5, 55, 961, 24101, 818821, 36053515, 1984670465, 132825475081, 10583425959301, 988018789759871, 106673677280748865, 13172700275176482925, 1842428769970603518341, 289406832942160060794451, 50677793314733587473331201, 9829328870566195730521433105
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 28 2017

Keywords

Comments

Conjecture: a(n+k) == a(n) (mod k) for all n and k. If true, then for each k, the sequence a(n) taken modulo k is a periodic sequence and the period divides k. - Peter Bala, Mar 12 2023

Crossrefs

Main diagonal of A293012. Cf. A361281.

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[x/(1 - x)^n] , {x, 0, n}], {n, 0, 17}]
    (* or *)
    nmax = 20; Join[{1}, Table[n!*Sum[Binomial[(n-1)*(k+1), k*n - 1]/k!, {k, 1, n}], {n, 1, nmax}]] (* Vaclav Kotesovec, Aug 24 2025 *)

Formula

a(n) = A293012(n,n).
For n > 0, a(n) = n! * Sum_{k=1..n} binomial((n-1)*(k+1), k*n - 1)/k!. - Vaclav Kotesovec, Aug 24 2025
log(a(n)) ~ n * (2*log(n) - log(log(n)) - 1 - log(2) + log(log(n))/log(n) + (1 + 2*log(2))/(2*log(n))). - Vaclav Kotesovec, Aug 25 2025

A361277 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} binomial(k*j,n-j)/j!.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 7, 1, 1, 1, 7, 19, 25, 1, 1, 1, 9, 37, 97, 81, 1, 1, 1, 11, 61, 241, 581, 331, 1, 1, 1, 13, 91, 481, 1981, 3661, 1303, 1, 1, 1, 15, 127, 841, 4881, 17551, 26335, 5937, 1, 1, 1, 17, 169, 1345, 10001, 55321, 171697, 202049, 26785, 1
Offset: 0

Views

Author

Seiichi Manyama, Mar 06 2023

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,    1,     1, ...
  1,  1,   1,    1,    1,     1, ...
  1,  3,   5,    7,    9,    11, ...
  1,  7,  19,   37,   61,    91, ...
  1, 25,  97,  241,  481,   841, ...
  1, 81, 581, 1981, 4881, 10001, ...
		

Crossrefs

Columns k=0..4 give A000012, A047974, A361278, A361279, A361280.
Main diagonal gives A361281.
Cf. A293012.

Programs

  • PARI
    T(n, k) = n!*sum(j=0, n, binomial(k*j, n-j)/j!);

Formula

E.g.f. of column k: exp(x * (1+x)^k).
T(0,k) = 1; T(n,k) = (n-1)! * Sum_{j=1..n} j * binomial(k,j-1) * T(n-j,k)/(n-j)!.

A361036 a(n) = n! * [x^n] (1 + x)^n * exp(x*(1 + x)^n).

Original entry on oeis.org

1, 2, 11, 124, 2225, 56546, 1928707, 85029596, 4687436609, 314255427490, 25077179715131, 2343489559096412, 253185531592066801, 31279831940279656514, 4376923336721600128115, 687815536092999747916156, 120491486068612766739548417, 23378730923206887237941740226
Offset: 0

Views

Author

Peter Bala, Mar 13 2023

Keywords

Comments

We conjecture that a(n+k) == a(n) (mod k) for all n and k. If true, then for each k, the sequence a(n) taken modulo k is a periodic sequence and the period divides k. For example, modulo 7 the sequence becomes [1, 2, 4, 5, 6, 0, 4, 1, 2, 4, 5, 6, 0, 4, 1, 2, 4, 5, 6, 0, 4, ...], apparently a periodic sequence of period 7.
More generally, let F(x) and G(x) denote power series with integer coefficients with F(0) = G(0) = 1. Define b(n) = n! * [x^n] exp(x*G(x)^n)*F(x)^n. Then we conjecture that b(n+k) == b(n) (mod k) for all n and k.

Crossrefs

Programs

  • Maple
    seq( n!*add(add(binomial(n,i+j)*binomial(j*n,i)/j!, j = 0..n-i), i = 0..n), n = 0..20);
  • Mathematica
    Table[n! * Sum[Sum[Binomial[n, i + j]*Binomial[j*n, i]/j!, {j, 0, n - i}], {i, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 27 2023 *)

Formula

a(n) = n!*Sum_{i = 0..n} Sum_{j = 0..n-i} binomial(n,i+j)*binomial(j*n,i)/j!.
a(n) ~ n! * exp(r*(1+r)^n) * (1+r)^(n/2 + 1) / (sqrt(2*Pi*n*(3 + n*r)) * r^(n+1)), where r = 2*LambertW(n/2)/n - (n + 2*LambertW(n/2)) * (n - 4*LambertW(n/2)^3) / (n^3 * (3 + 2*LambertW(n/2))). - Vaclav Kotesovec, Mar 28 2023
Showing 1-4 of 4 results.