cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A293012 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(x/(1 - x)^k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 13, 1, 1, 1, 7, 31, 73, 1, 1, 1, 9, 55, 241, 501, 1, 1, 1, 11, 85, 529, 2261, 4051, 1, 1, 1, 13, 121, 961, 6121, 24781, 37633, 1, 1, 1, 15, 163, 1561, 13041, 82711, 309835, 394353, 1, 1, 1, 17, 211, 2353, 24101, 207001, 1273567, 4342241, 4596553, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 28 2017

Keywords

Examples

			E.g.f. of column k: A_k(x) =  1 + x/1! + (2*k + 1)*x^2/2! + (3*k^2 + 9*k + 1)*x^3/3! + (4*k^3 + 36*k^2 + 32*k + 1)*x^4/4! + ...
Square array begins:
  1,   1,    1,    1,     1,     1,  ...
  1,   1,    1,    1,     1,     1,  ...
  1,   3,    5,    7,     9,    11,  ...
  1,  13,   31,   55,    85,   121,  ...
  1,  73,  241,  529,   961,  1561,  ...
  1, 501, 2261, 6121, 13041, 24101,  ...
		

Crossrefs

Columns k=0..4 give A000012, A000262, A082579, A091695, A361283.
Main diagonal gives A293013.

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[x/(1 - x)^k], {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
  • PARI
    T(n, k) = n!*sum(j=0, n, binomial(n+(k-1)*j-1, n-j)/j!); \\ Seiichi Manyama, Mar 06 2023

Formula

E.g.f. of column k: exp(x/(1 - x)^k).
From Seiichi Manyama, Oct 21 2017: (Start)
Let B(j,k) = (-1)^(j-1)*binomial(-k,j-1) for j>0 and k>=0.
A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..n} j*B(j,k)*A(n-j,k)/(n-j)! for n > 0. (End)
A(n,k) = n! * Sum_{j=0..n} binomial(n+(k-1)*j-1,n-j)/j!. - Seiichi Manyama, Mar 06 2023

A361281 a(n) = n! * Sum_{k=0..n} binomial(n*k,n-k)/k!.

Original entry on oeis.org

1, 1, 5, 37, 481, 10001, 288901, 10820965, 511186817, 29843419681, 2106779832901, 176180844038981, 17165338119936865, 1924030148121500017, 245630480526435293381, 35409038825312233143301, 5719025066628373334423041, 1027649751647068260334391105
Offset: 0

Views

Author

Seiichi Manyama, Mar 06 2023

Keywords

Comments

From Peter Bala, Mar 12 2023: (Start)
It appears that a(n) == 1 (mod 4) and a(5*n+2) == 0 (mod 5) for all n. More generally we conjecture that a(n+k) == a(n) (mod k) for all n and k. If true, then for each k, the sequence a(n) taken modulo k is a periodic sequence and the period divides k.
Let F(x) and G(x) be power series with integer coefficients with G(0) = 1. Define b(n) = n! * [x^n] F(x)*exp(x*G(x)^n). Then we conjecture that b(n+k) == b(n) (mod k) for all n and k. The present sequence is the case F(x) = 1, G(x) = 1 + x. Cf. A278070. (End)

Crossrefs

Main diagonal of A361277.

Programs

  • PARI
    a(n) = n!*sum(k=0, n, binomial(n*k, n-k)/k!);

Formula

a(n) = n! * [x^n] exp(x * (1+x)^n).
log(a(n)) ~ n*(2*log(n) - log(log(n)) - 1 - log(2) + log(log(n))/log(n) + 1/(2*log(n)) + log(2)/log(n) - 1/(8*log(n)^2)). - Vaclav Kotesovec, Mar 12 2023

A361607 a(n) = n! * Sum_{k=0..n} binomial(n+(n-1)*k,n*k)/k!.

Original entry on oeis.org

1, 2, 9, 88, 1457, 35226, 1158097, 49554464, 2664907233, 175012404562, 13725980234201, 1263867766626312, 134795551989905809, 16464112185873351338, 2280346417134518709537, 355060682992984062716176
Offset: 0

Views

Author

Seiichi Manyama, Mar 17 2023

Keywords

Crossrefs

Main diagonal of A361600.
Cf. A293013.

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]*(n*k + n - k)!/(n*k)!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 17 2023 *)
  • PARI
    a(n) = sum(k=0, n, (n*k+n-k)!/(n*k)!*binomial(n, k));

Formula

a(n) = n! * [x^n] exp( x/(1-x)^n ) / (1-x).
a(n) = Sum_{k=0..n} (n*k+n-k)!/(n*k)! * binomial(n,k).
log(a(n)) ~ n*(2*log(n) - log(log(n)) - 1 - log(2) + (log(log(n)) + log(2) + 1/2)/log(n)). - Vaclav Kotesovec, Mar 17 2023
Showing 1-3 of 3 results.