A091695
Expansion of e.g.f. exp(x/(1-x)^3).
Original entry on oeis.org
1, 1, 7, 55, 529, 6121, 82711, 1273567, 21945505, 417540529, 8680953511, 195582295591, 4742407056817, 123045795823705, 3399348471640759, 99573135106176271, 3081061456572152641, 100382623544966098657, 3433727597233037475655, 123000248740384210119319, 4603377404407810366309201
Offset: 0
-
CoefficientList[Series[E^(x/(1-x)^3), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 27 2013 *)
-
x='x+O('x^33);
Vec(serlaplace(exp( x/(1-x)^3 )))
/* Joerg Arndt, Sep 14 2012 */
A291709
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(Sum_{j>=1} (-1)^(j-1)*binomial(-k,j-1)*x^j/j).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 6, 1, 1, 1, 4, 13, 24, 1, 1, 1, 5, 22, 73, 120, 1, 1, 1, 6, 33, 154, 501, 720, 1, 1, 1, 7, 46, 273, 1306, 4051, 5040, 1, 1, 1, 8, 61, 436, 2721, 12976, 37633, 40320, 1, 1, 1, 9, 78, 649, 4956, 31701, 147484, 394353, 362880, 1
Offset: 0
Square array B(j,k) begins:
1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, ...
0, 1, 3, 6, 10, ...
0, 1, 4, 10, 20, ...
0, 1, 5, 15, 35, ...
0, 1, 6, 21, 56, ...
Square array A(n,k) begins:
1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, ...
1, 6, 13, 22, 33, ...
1, 24, 73, 154, 273, ...
1, 120, 501, 1306, 2721, ...
Columns k=0..10 give
A000012,
A000142,
A000262,
A049376,
A049377,
A049378,
A049402,
A132164,
A293986,
A293987,
A293988.
-
B[j_, k_] := (-1)^(j-1)*Binomial[-k, j-1];
A[0, ] = 1; A[n, k_] := (n-1)!*Sum[B[j, k]*A[n-j, k]/(n-j)!, {j, 1, n}];
Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 03 2017 *)
A361283
Expansion of e.g.f. exp(x/(1-x)^4).
Original entry on oeis.org
1, 1, 9, 85, 961, 13041, 207001, 3746149, 75832065, 1693615681, 41302616041, 1090835399061, 30988423000129, 941461990360945, 30439632977968761, 1042973073239321701, 37731609890300935681, 1436586994020158747649
Offset: 0
-
A361283 := proc(n)
n!*add(binomial(n+3*k-1,n-k)/k!,k=0..n) ;
end proc:
seq(A361283(n),n=0..40) ; # R. J. Mathar, Mar 12 2023
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x/(1-x)^4)))
-
a(n) = n!*sum(k=0, n, (-1)^(n-k)*binomial(-4*k, n-k)/k!);
-
a(n) = n!*sum(k=0, n, binomial(n+3*k-1, n-k)/k!);
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, i, (-1)^(j-1)*j*binomial(-4, j-1)*v[i-j+1]/(i-j)!)); v;
A361600
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} binomial(n+(k-1)*j,k*j)/j!.
Original entry on oeis.org
1, 1, 2, 1, 2, 5, 1, 2, 7, 16, 1, 2, 9, 34, 65, 1, 2, 11, 58, 209, 326, 1, 2, 13, 88, 473, 1546, 1957, 1, 2, 15, 124, 881, 4626, 13327, 13700, 1, 2, 17, 166, 1457, 10526, 52537, 130922, 109601, 1, 2, 19, 214, 2225, 20326, 145867, 677594, 1441729, 986410
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, ...
5, 7, 9, 11, 13, 15, ...
16, 34, 58, 88, 124, 166, ...
65, 209, 473, 881, 1457, 2225, ...
326, 1546, 4626, 10526, 20326, 35226, ...
-
T(n, k) = n!*sum(j=0, n, binomial(n+(k-1)*j, k*j)/j!);
A293013
a(n) = n! * [x^n] exp(x/(1 - x)^n).
Original entry on oeis.org
1, 1, 5, 55, 961, 24101, 818821, 36053515, 1984670465, 132825475081, 10583425959301, 988018789759871, 106673677280748865, 13172700275176482925, 1842428769970603518341, 289406832942160060794451, 50677793314733587473331201, 9829328870566195730521433105
Offset: 0
-
Table[n! SeriesCoefficient[Exp[x/(1 - x)^n] , {x, 0, n}], {n, 0, 17}]
(* or *)
nmax = 20; Join[{1}, Table[n!*Sum[Binomial[(n-1)*(k+1), k*n - 1]/k!, {k, 1, n}], {n, 1, nmax}]] (* Vaclav Kotesovec, Aug 24 2025 *)
A361277
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} binomial(k*j,n-j)/j!.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 7, 1, 1, 1, 7, 19, 25, 1, 1, 1, 9, 37, 97, 81, 1, 1, 1, 11, 61, 241, 581, 331, 1, 1, 1, 13, 91, 481, 1981, 3661, 1303, 1, 1, 1, 15, 127, 841, 4881, 17551, 26335, 5937, 1, 1, 1, 17, 169, 1345, 10001, 55321, 171697, 202049, 26785, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, ...
1, 7, 19, 37, 61, 91, ...
1, 25, 97, 241, 481, 841, ...
1, 81, 581, 1981, 4881, 10001, ...
-
T(n, k) = n!*sum(j=0, n, binomial(k*j, n-j)/j!);
A387244
Expansion of e.g.f. exp(x^2/(1-x)^4).
Original entry on oeis.org
1, 0, 2, 24, 252, 2880, 38280, 594720, 10565520, 209502720, 4558407840, 107702179200, 2744400415680, 75016089308160, 2189152249764480, 67906418407027200, 2230160988344889600, 77271779968704921600, 2815893910009609228800, 107629691727791474841600, 4304364116456244429388800
Offset: 0
-
m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x^2/(1-x)^4))); [Factorial(n-1)*b[n]: n in [1..m]]; // Vincenzo Librandi, Aug 25 2025
-
nmax=20; CoefficientList[Series[E^(x^2/(1-x)^4), {x, 0, nmax}], x] * Range[0, nmax]!
nmax=20; Join[{1}, Table[n!*Sum[Binomial[n+2*k-1, 4*k-1]/k!, {k, 1, n}], {n, 1, nmax}]]
Join[{1}, Table[n!*n*(n - 1)*(n + 1)/6 * HypergeometricPFQ[{1 - n/2, 3/2 - n/2, 1 + n/2, 3/2 + n/2}, {5/4, 3/2, 7/4, 2}, 1/16], {n, 1, 20}]]
A386514
Expansion of e.g.f. exp(x^2/(1-x)^3).
Original entry on oeis.org
1, 0, 2, 18, 156, 1560, 18480, 254520, 3973200, 68947200, 1312748640, 27175024800, 607314818880, 14566195163520, 373027570755840, 10154293067318400, 292659790712889600, 8899747730037964800, 284685195814757337600, 9553060139009702515200, 335468448755976164428800
Offset: 0
a(6)=18480 since there are 10800 ways using one line, 4320 ways with 2 lines using 2 and 4 objects, 3240 ways with 2 lines of 3 objects each, and 120 ways with 3 lines of 2 objects each.
-
nmax = 20; CoefficientList[Series[E^(x^2/(1-x)^3), {x, 0, nmax}], x] * Range[0, nmax]! (* or *)
nmax = 20; Join[{1}, Table[n!*Sum[Binomial[n + k - 1, 3*k - 1]/k!, {k, 1, n}], {n, 1, nmax}]] (* Vaclav Kotesovec, Aug 24 2025 *)
A293055
a(n) = n! * [x^n] Product_{k>0} exp(binomial(n+k-1,n)*x^k).
Original entry on oeis.org
1, 1, 7, 85, 1561, 40501, 1414351, 63752137, 3580066225, 243666746281, 19695440339191, 1861672467512221, 203222602188410377, 25344097136222687005, 3576607716683440603711, 566387437351728771087121, 99916441198022855099556961, 19511402630734166295545687377
Offset: 0
-
Table[n!*SeriesCoefficient[Exp[x/(1-x)^(n+1)], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 29 2017 *)
Showing 1-9 of 9 results.
Comments