cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A091695 Expansion of e.g.f. exp(x/(1-x)^3).

Original entry on oeis.org

1, 1, 7, 55, 529, 6121, 82711, 1273567, 21945505, 417540529, 8680953511, 195582295591, 4742407056817, 123045795823705, 3399348471640759, 99573135106176271, 3081061456572152641, 100382623544966098657, 3433727597233037475655, 123000248740384210119319, 4603377404407810366309201
Offset: 0

Views

Author

Karol A. Penson, Jan 29 2004

Keywords

Comments

Special values of the hypergeometric function 3F3: a(n) = n!*binomial(n+1,n-1) * hypergeom([ -n+1, 1/2*n+1, 1/2*n+3/2], [4/3, 5/3, 2], -4/27) for n>0.

Crossrefs

Column k=3 of A293012.
Cf. A082579.

Programs

  • Mathematica
    CoefficientList[Series[E^(x/(1-x)^3), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 27 2013 *)
  • PARI
    x='x+O('x^33);
    Vec(serlaplace(exp( x/(1-x)^3 )))
    /* Joerg Arndt, Sep 14 2012 */

Formula

E.g.f.: exp(x/(1-x)^3).
a(n) ~ 1/2*exp(-1/27-n^(1/4)*3^(3/4)/72+sqrt(3*n)/6+4/3*n^(3/4)*3^(1/4)-n)*3^(1/8)*n^(n-1/8). - Vaclav Kotesovec, Jun 27 2013
a(n) = n! * Sum_{k=0..n} binomial(n+2*k-1,n-k)/k!. - Seiichi Manyama, Mar 06 2023

Extensions

Prepended a(0)=1, Joerg Arndt, Sep 14 2012.

A291709 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(Sum_{j>=1} (-1)^(j-1)*binomial(-k,j-1)*x^j/j).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 6, 1, 1, 1, 4, 13, 24, 1, 1, 1, 5, 22, 73, 120, 1, 1, 1, 6, 33, 154, 501, 720, 1, 1, 1, 7, 46, 273, 1306, 4051, 5040, 1, 1, 1, 8, 61, 436, 2721, 12976, 37633, 40320, 1, 1, 1, 9, 78, 649, 4956, 31701, 147484, 394353, 362880, 1
Offset: 0

Views

Author

Seiichi Manyama, Oct 21 2017

Keywords

Examples

			Square array B(j,k) begins:
   1,   1,   1,    1,    1, ...
   0,   1,   2,    3,    4, ...
   0,   1,   3,    6,   10, ...
   0,   1,   4,   10,   20, ...
   0,   1,   5,   15,   35, ...
   0,   1,   6,   21,   56, ...
Square array A(n,k) begins:
   1,   1,   1,    1,    1, ...
   1,   1,   1,    1,    1, ...
   1,   2,   3,    4,    5, ...
   1,   6,  13,   22,   33, ...
   1,  24,  73,  154,  273, ...
   1, 120, 501, 1306, 2721, ...
		

Crossrefs

Rows n=0-1 give A000012.
Main diagonal gives A293989.

Programs

  • Mathematica
    B[j_, k_] := (-1)^(j-1)*Binomial[-k, j-1];
    A[0, ] = 1; A[n, k_] := (n-1)!*Sum[B[j, k]*A[n-j, k]/(n-j)!, {j, 1, n}];
    Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 03 2017 *)

Formula

Let B(j,k) = (-1)^(j-1)*binomial(-k,j-1) for j>0 and k>=0.
A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..n} B(j,k)*A(n-j,k)/(n-j)! for n > 0.

A361283 Expansion of e.g.f. exp(x/(1-x)^4).

Original entry on oeis.org

1, 1, 9, 85, 961, 13041, 207001, 3746149, 75832065, 1693615681, 41302616041, 1090835399061, 30988423000129, 941461990360945, 30439632977968761, 1042973073239321701, 37731609890300935681, 1436586994020158747649
Offset: 0

Views

Author

Seiichi Manyama, Mar 06 2023

Keywords

Crossrefs

Column k=4 of A293012.
Cf. A361280.

Programs

  • Maple
    A361283 := proc(n)
        n!*add(binomial(n+3*k-1,n-k)/k!,k=0..n) ;
    end proc:
    seq(A361283(n),n=0..40) ; # R. J. Mathar, Mar 12 2023
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x/(1-x)^4)))
    
  • PARI
    a(n) = n!*sum(k=0, n, (-1)^(n-k)*binomial(-4*k, n-k)/k!);
    
  • PARI
    a(n) = n!*sum(k=0, n, binomial(n+3*k-1, n-k)/k!);
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, i, (-1)^(j-1)*j*binomial(-4, j-1)*v[i-j+1]/(i-j)!)); v;

Formula

a(n) = n! * Sum_{k=0..n} (-1)^(n-k) * binomial(-4*k,n-k)/k! = n! * Sum_{k=0..n} binomial(n+3*k-1,n-k)/k!.
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} (-1)^(k-1) * k * binomial(-4,k-1) * a(n-k)/(n-k)!.
D-finite with recurrence a(n) +(-5*n+4)*a(n-1) +(n-1)*(10*n-23)*a(n-2) -10*(n-1)*(n-2)*(n-3)*a(n-3) +5*(n-1)*(n-2)*(n-3)*(n-4)*a(n-4) -(n-5)*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Mar 12 2023
a(n) ~ 2^(1/5) * n^(n - 1/10) * exp(-27/1280 - 13*2^(3/5)*n^(1/5)/800 + 13*2^(1/5)*n^(2/5)/240 + 2^(-6/5)*n^(3/5) + 5*2^(-8/5)*n^(4/5) - n) / sqrt(5) * (1 + 116303*2^(12/5)/(3200000*n^(1/5))). - Vaclav Kotesovec, Nov 11 2023

A361600 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} binomial(n+(k-1)*j,k*j)/j!.

Original entry on oeis.org

1, 1, 2, 1, 2, 5, 1, 2, 7, 16, 1, 2, 9, 34, 65, 1, 2, 11, 58, 209, 326, 1, 2, 13, 88, 473, 1546, 1957, 1, 2, 15, 124, 881, 4626, 13327, 13700, 1, 2, 17, 166, 1457, 10526, 52537, 130922, 109601, 1, 2, 19, 214, 2225, 20326, 145867, 677594, 1441729, 986410
Offset: 0

Views

Author

Seiichi Manyama, Mar 17 2023

Keywords

Examples

			Square array begins:
    1,    1,    1,     1,     1,     1, ...
    2,    2,    2,     2,     2,     2, ...
    5,    7,    9,    11,    13,    15, ...
   16,   34,   58,    88,   124,   166, ...
   65,  209,  473,   881,  1457,  2225, ...
  326, 1546, 4626, 10526, 20326, 35226, ...
		

Crossrefs

Columns k=0..3 give A000522, A002720, A361598, A361599.
Main diagonal gives A361607.
Cf. A293012.

Programs

  • PARI
    T(n, k) = n!*sum(j=0, n, binomial(n+(k-1)*j, k*j)/j!);

Formula

E.g.f. of column k: exp( x/(1 - x)^k ) / (1-x).
T(n,k) = Sum_{j=0..n} (n+(k-1)*j)!/(k*j)! * binomial(n,j).

A293013 a(n) = n! * [x^n] exp(x/(1 - x)^n).

Original entry on oeis.org

1, 1, 5, 55, 961, 24101, 818821, 36053515, 1984670465, 132825475081, 10583425959301, 988018789759871, 106673677280748865, 13172700275176482925, 1842428769970603518341, 289406832942160060794451, 50677793314733587473331201, 9829328870566195730521433105
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 28 2017

Keywords

Comments

Conjecture: a(n+k) == a(n) (mod k) for all n and k. If true, then for each k, the sequence a(n) taken modulo k is a periodic sequence and the period divides k. - Peter Bala, Mar 12 2023

Crossrefs

Main diagonal of A293012. Cf. A361281.

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[x/(1 - x)^n] , {x, 0, n}], {n, 0, 17}]
    (* or *)
    nmax = 20; Join[{1}, Table[n!*Sum[Binomial[(n-1)*(k+1), k*n - 1]/k!, {k, 1, n}], {n, 1, nmax}]] (* Vaclav Kotesovec, Aug 24 2025 *)

Formula

a(n) = A293012(n,n).
For n > 0, a(n) = n! * Sum_{k=1..n} binomial((n-1)*(k+1), k*n - 1)/k!. - Vaclav Kotesovec, Aug 24 2025
log(a(n)) ~ n * (2*log(n) - log(log(n)) - 1 - log(2) + log(log(n))/log(n) + (1 + 2*log(2))/(2*log(n))). - Vaclav Kotesovec, Aug 25 2025

A361277 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} binomial(k*j,n-j)/j!.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 7, 1, 1, 1, 7, 19, 25, 1, 1, 1, 9, 37, 97, 81, 1, 1, 1, 11, 61, 241, 581, 331, 1, 1, 1, 13, 91, 481, 1981, 3661, 1303, 1, 1, 1, 15, 127, 841, 4881, 17551, 26335, 5937, 1, 1, 1, 17, 169, 1345, 10001, 55321, 171697, 202049, 26785, 1
Offset: 0

Views

Author

Seiichi Manyama, Mar 06 2023

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,    1,     1, ...
  1,  1,   1,    1,    1,     1, ...
  1,  3,   5,    7,    9,    11, ...
  1,  7,  19,   37,   61,    91, ...
  1, 25,  97,  241,  481,   841, ...
  1, 81, 581, 1981, 4881, 10001, ...
		

Crossrefs

Columns k=0..4 give A000012, A047974, A361278, A361279, A361280.
Main diagonal gives A361281.
Cf. A293012.

Programs

  • PARI
    T(n, k) = n!*sum(j=0, n, binomial(k*j, n-j)/j!);

Formula

E.g.f. of column k: exp(x * (1+x)^k).
T(0,k) = 1; T(n,k) = (n-1)! * Sum_{j=1..n} j * binomial(k,j-1) * T(n-j,k)/(n-j)!.

A387244 Expansion of e.g.f. exp(x^2/(1-x)^4).

Original entry on oeis.org

1, 0, 2, 24, 252, 2880, 38280, 594720, 10565520, 209502720, 4558407840, 107702179200, 2744400415680, 75016089308160, 2189152249764480, 67906418407027200, 2230160988344889600, 77271779968704921600, 2815893910009609228800, 107629691727791474841600, 4304364116456244429388800
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 24 2025

Keywords

Comments

In general, if s >= 1, 1 <= r <= s and e.g.f. = exp(x^r/(1-x)^s) then for n > 0, a(n) = n! * Sum_{k=1..n} binomial(n + (s-r)*k - 1, s*k - 1)/k!.

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x^2/(1-x)^4))); [Factorial(n-1)*b[n]: n in [1..m]]; // Vincenzo Librandi, Aug 25 2025
  • Mathematica
    nmax=20; CoefficientList[Series[E^(x^2/(1-x)^4), {x, 0, nmax}], x] * Range[0, nmax]!
    nmax=20; Join[{1}, Table[n!*Sum[Binomial[n+2*k-1, 4*k-1]/k!, {k, 1, n}], {n, 1, nmax}]]
    Join[{1}, Table[n!*n*(n - 1)*(n + 1)/6 * HypergeometricPFQ[{1 - n/2, 3/2 - n/2, 1 + n/2, 3/2 + n/2}, {5/4, 3/2, 7/4, 2}, 1/16], {n, 1, 20}]]

Formula

For n > 0, a(n) = n! * Sum_{k=1..n} binomial(n + 2*k - 1, 4*k - 1)/k!.
a(n) = 5*(n-1)*a(n-1) - 2*(n-1)*(5*n-11)*a(n-2) + 2*(n-2)*(n-1)*(5*n-14)*a(n-3) - 5*(n-4)*(n-3)*(n-2)*(n-1)*a(n-4) + (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-5).
a(n) ~ 2^(1/5) * 5^(-1/2) * exp(1/80 - 2^(-9/5)*n^(2/5)/3 + 5*2^(-8/5)*n^(4/5) - n) * n^(n - 1/10).

A386514 Expansion of e.g.f. exp(x^2/(1-x)^3).

Original entry on oeis.org

1, 0, 2, 18, 156, 1560, 18480, 254520, 3973200, 68947200, 1312748640, 27175024800, 607314818880, 14566195163520, 373027570755840, 10154293067318400, 292659790712889600, 8899747730037964800, 284685195814757337600, 9553060139009702515200, 335468448755976164428800
Offset: 0

Views

Author

Enrique Navarrete, Aug 23 2025

Keywords

Comments

For n > 0, a(n) is the number of ways to linearly order n distinguishable objects into one or several lines and then choose 2 objects from each line. If the lines are also linearly ordered see A364524.
A001804(n) is the number of ways if only 1 line is used.

Examples

			a(6)=18480 since there are 10800 ways using one line, 4320 ways with 2 lines using 2 and 4 objects, 3240 ways with 2 lines of 3 objects each, and 120 ways with 3 lines of 2 objects each.
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[E^(x^2/(1-x)^3), {x, 0, nmax}], x] * Range[0, nmax]! (* or *)
    nmax = 20; Join[{1}, Table[n!*Sum[Binomial[n + k - 1, 3*k - 1]/k!, {k, 1, n}], {n, 1, nmax}]] (* Vaclav Kotesovec, Aug 24 2025 *)

Formula

From Vaclav Kotesovec, Aug 24 2025: (Start)
For n > 0, a(n) = n! * Sum_{k=1..n} binomial(n+k-1, 3*k-1) / k!.
a(n) = 4*(n-1)*a(n-1) - 2*(n-1)*(3*n-7)*a(n-2) + (n-2)*(n-1)*(4*n-11)*a(n-3) - (n-4)*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ 3^(1/8) * exp(1/27 - 3^(-5/4)*n^(1/4)/8 - 3^(-1/2)*n^(1/2)/2 + 4*3^(-3/4)*n^(3/4) - n) * n^(n-1/8) / 2. (End)

A293055 a(n) = n! * [x^n] Product_{k>0} exp(binomial(n+k-1,n)*x^k).

Original entry on oeis.org

1, 1, 7, 85, 1561, 40501, 1414351, 63752137, 3580066225, 243666746281, 19695440339191, 1861672467512221, 203222602188410377, 25344097136222687005, 3576607716683440603711, 566387437351728771087121, 99916441198022855099556961, 19511402630734166295545687377
Offset: 0

Views

Author

Seiichi Manyama, Sep 29 2017

Keywords

Crossrefs

Cf. A293012.

Programs

  • Mathematica
    Table[n!*SeriesCoefficient[Exp[x/(1-x)^(n+1)], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 29 2017 *)

Formula

a(n) = n! * [x^n] exp(x/(1-x)^(n+1)).
Showing 1-9 of 9 results.