cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A293012 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(x/(1 - x)^k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 13, 1, 1, 1, 7, 31, 73, 1, 1, 1, 9, 55, 241, 501, 1, 1, 1, 11, 85, 529, 2261, 4051, 1, 1, 1, 13, 121, 961, 6121, 24781, 37633, 1, 1, 1, 15, 163, 1561, 13041, 82711, 309835, 394353, 1, 1, 1, 17, 211, 2353, 24101, 207001, 1273567, 4342241, 4596553, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 28 2017

Keywords

Examples

			E.g.f. of column k: A_k(x) =  1 + x/1! + (2*k + 1)*x^2/2! + (3*k^2 + 9*k + 1)*x^3/3! + (4*k^3 + 36*k^2 + 32*k + 1)*x^4/4! + ...
Square array begins:
  1,   1,    1,    1,     1,     1,  ...
  1,   1,    1,    1,     1,     1,  ...
  1,   3,    5,    7,     9,    11,  ...
  1,  13,   31,   55,    85,   121,  ...
  1,  73,  241,  529,   961,  1561,  ...
  1, 501, 2261, 6121, 13041, 24101,  ...
		

Crossrefs

Columns k=0..4 give A000012, A000262, A082579, A091695, A361283.
Main diagonal gives A293013.

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[x/(1 - x)^k], {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
  • PARI
    T(n, k) = n!*sum(j=0, n, binomial(n+(k-1)*j-1, n-j)/j!); \\ Seiichi Manyama, Mar 06 2023

Formula

E.g.f. of column k: exp(x/(1 - x)^k).
From Seiichi Manyama, Oct 21 2017: (Start)
Let B(j,k) = (-1)^(j-1)*binomial(-k,j-1) for j>0 and k>=0.
A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..n} j*B(j,k)*A(n-j,k)/(n-j)! for n > 0. (End)
A(n,k) = n! * Sum_{j=0..n} binomial(n+(k-1)*j-1,n-j)/j!. - Seiichi Manyama, Mar 06 2023

A361279 Expansion of e.g.f. exp(x * (1+x)^3).

Original entry on oeis.org

1, 1, 7, 37, 241, 1981, 17551, 171697, 1860097, 21609721, 268697431, 3566446621, 50060084977, 740156116597, 11496472967071, 186824483634601, 3167058238988161, 55882288483846897, 1023891003620741287, 19440027237549627541, 381822392009503555441
Offset: 0

Views

Author

Seiichi Manyama, Mar 06 2023

Keywords

Crossrefs

Column k=3 of A361277.
Cf. A091695.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*(1+x)^3)))
    
  • PARI
    a(n) = n!*sum(k=0, n, binomial(3*k, n-k)/k!);
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, i, j*binomial(3, j-1)*v[i-j+1]/(i-j)!)); v;

Formula

a(n) = n! * Sum_{k=0..n} binomial(3*k,n-k)/k!.
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} k * binomial(3,k-1) * a(n-k)/(n-k)!.
D-finite with recurrence a(n) -a(n-1) +6*(-n+1)*a(n-2) -9*(n-1)*(n-2)*a(n-3) -4*(n-1)*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Mar 13 2023
a(n) ~ 2^(n/2 - 1) * n^(3*n/4) / exp(3*n/4 - 3*n^(3/4)/2^(3/2) - 15*n^(1/2)/64 + n^(1/4)/2^(19/2) + 27/1024) * (1 + 724053*sqrt(2)/(2621440*n^(1/4))). - Vaclav Kotesovec, Nov 11 2023

A380515 Expansion of e.g.f. exp(x*G(x)^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 7, 109, 2689, 91261, 3950191, 208064137, 12917499169, 923765042809, 74780847503191, 6760168138392901, 675023676995501857, 73787463232202560309, 8763902701210982610559, 1123850728979698205132641, 154757223522414820829369281, 22775744033825102490806751217
Offset: 0

Views

Author

Seiichi Manyama, Jan 26 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, 3*n!*sum(k=0, n-1, binomial(3*n+k, k)/((3*n+k)*(n-k-1)!)));

Formula

a(n) = 3 * n! * Sum_{k=0..n-1} binomial(3*n+k,k)/((3*n+k) * (n-k-1)!) for n > 0.
a(n) = U(1-n, 2-4*n, 1), where U is the Tricomi confluent hypergeometric function. - Stefano Spezia, Jan 26 2025
E.g.f.: exp( Series_Reversion( x*(1-x)^3 ) ). - Seiichi Manyama, Mar 15 2025

A361599 Expansion of e.g.f. exp( x/(1-x)^3 ) / (1-x).

Original entry on oeis.org

1, 2, 11, 88, 881, 10526, 145867, 2294636, 40302593, 780263866, 16483592171, 376901809472, 9265228770481, 243493769839958, 6808261249400171, 201697053847178836, 6308214318127014017, 207622266953125336946, 7170928402389293540683, 259247888385780787392296
Offset: 0

Views

Author

Seiichi Manyama, Mar 17 2023

Keywords

Crossrefs

Column k=3 of A361600.
Cf. A091695.

Programs

  • Mathematica
    Table[n! * Sum[Binomial[n+2*k,3*k]/k!, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Mar 17 2023 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x/(1-x)^3)/(1-x)))

Formula

a(n) = n! * Sum_{k=0..n} binomial(n+2*k,3*k)/k! = Sum_{k=0..n} (n+2*k)!/(3*k)! * binomial(n,k).
From Vaclav Kotesovec, Mar 17 2023: (Start)
a(n) = 2*(2*n - 1)*a(n-1) - (n-1)*(6*n - 11)*a(n-2) + (n-2)*(n-1)*(4*n - 9)*a(n-3) - (n-3)^2*(n-2)*(n-1)*a(n-4).
a(n) ~ 3^(-1/8) * exp(-1/27 - 3^(-5/4)*n^(1/4)/8 + sqrt(n/3)/2 + 4*3^(-3/4)*n^(3/4) - n) * n^(n + 1/8) / 2 * (1 + (34237/69120)*3^(1/4)/n^(1/4)). (End)

A367789 E.g.f. satisfies A(x) = exp( x/(1-x)^3 * A(x) ).

Original entry on oeis.org

1, 1, 9, 106, 1697, 35076, 893947, 27165706, 960298593, 38751082552, 1758831242291, 88726543365054, 4926355857050641, 298605321687360676, 19623211558172733435, 1389870724939251455506, 105556814502357807727553, 8557797733469700008170224
Offset: 0

Views

Author

Seiichi Manyama, Nov 30 2023

Keywords

Crossrefs

Programs

  • Maple
    A367789 := proc(n)
        n!*add((k+1)^(k-1) * binomial(n+2*k-1,n-k)/k!,k=0..n) ;
    end proc:
    seq(A367789(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x/(1-x)^3))))

Formula

E.g.f.: exp( -LambertW(-x/(1-x)^3) ).
a(n) = n! * Sum_{k=0..n} (k+1)^(k-1) * binomial(n+2*k-1,n-k)/k!.

A250917 Expansion of e.g.f. exp( x*C(x)^3 ) where C(x) = (1 - sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers, A000108.

Original entry on oeis.org

1, 1, 7, 73, 1033, 18541, 403831, 10351237, 305355793, 10192132153, 379819484551, 15634219476481, 704566985120857, 34506514429777573, 1825081888365736183, 103685565729559782781, 6297505655719537293601, 407233553972252986277617, 27935786938445348562454663
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2014

Keywords

Comments

In general, if k>0 and e.g.f. = exp(x*C(x)^k) where C(x) = (1 - sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers, then a(n) ~ k * 2^(2*n + k - 5/2) * n^(n-1) / exp(n - 2^(k-2)). - Vaclav Kotesovec, Aug 22 2017

Examples

			E.g.f.: A(x) = 1 + x + 7*x^2/2! + 73*x^3/3! + 1033*x^4/4! + 18541*x^5/5! +...
such that log(A(x)) = x*C(x)^3,
log(A(x)) = x + 3*x^2 + 9*x^3 + 28*x^4 + 90*x^5 + 297*x^6 + 1001*x^7 +...
where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
		

Crossrefs

Programs

  • PARI
    {a(n)=my(C=1); for(i=1, n, C=1+x*C^2 +x*O(x^n));
    n!*polcoef(exp(x*C^3), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = if(n==0, 1, sum(k=0, n, n!/k! * binomial(2*n+k-1, n-k) * 3*k/(n+2*k) ))}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(serreverse(x*(1-x))^3/x^2))) \\ Seiichi Manyama, Mar 15 2025

Formula

a(n) = Sum_{k=0..n} n!/k! * binomial(2*n+k-1, n-k) * 3*k/(n+2*k) for n>0 with a(0)=1.
a(n) ~ 3 * 2^(2*n+1/2) * n^(n-1) / exp(n-2). - Vaclav Kotesovec, Aug 22 2017
Conjecture D-finite with recurrence: +2*a(n) +(-11*n+20)*a(n-1) +(n^3+9*n^2-116*n+164)*a(n-2) +(-4*n^4+35*n^3+n^2-317*n+342)*a(n-3) -6*(n-3)*(6*n^3-50*n^2+147*n-176)*a(n-4) +12*(n-5)*(2*n-9)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Jan 25 2020
E.g.f.: exp( (1/x)^2 * Series_Reversion( x*(1-x) )^3 ). - Seiichi Manyama, Mar 15 2025

A335345 Expansion of e.g.f. exp(x^2/(2*(1 - x)^3)).

Original entry on oeis.org

1, 0, 1, 9, 75, 690, 7305, 89145, 1237425, 19221300, 329371245, 6157738125, 124551652995, 2707913238030, 62945320162725, 1557291398788125, 40844991621859425, 1131753403094113800, 33025920511859300025, 1012128709342410284625, 32494107983067177522075
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 02 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[x^2/(2 (1 - x)^3)], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = (1/4) Sum[Binomial[n - 1, k - 1] k (k - 1) k! a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
  • PARI
    seq(n)=Vec(serlaplace(exp(x^2/(2*(1 - x)^3) + O(x*x^n)))) \\ Andrew Howroyd, Jun 02 2020

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A001809(k) * a(n-k).
D-finite with recurrence 2*a(n) +8*(-n+1)*a(n-1) +2*(n-1)*(6*n-13)*a(n-2) -(n-1)*(n-2)*(8*n-23)*a(n-3) +2*(n-1)*(n-2)*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Jun 05 2020
a(n) ~ 2^(-9/8) * 3^(1/8) * n^(n - 1/8) * exp(1/54 - n^(1/4)/(2^(15/4)*3^(5/4)) - sqrt(6*n)/12 + 2^(7/4)*3^(-3/4)*n^(3/4) - n). - Vaclav Kotesovec, Jun 11 2020
a(n) = n! * Sum_{k=0..floor(n/2)} binomial(n+k-1,n-2*k)/(2^k * k!). - Seiichi Manyama, Jun 17 2024

A361572 Expansion of e.g.f. exp( (x / (1-x))^3 ).

Original entry on oeis.org

1, 0, 0, 6, 72, 720, 7560, 90720, 1270080, 20381760, 364694400, 7125148800, 150186960000, 3393726336000, 81882210009600, 2102315389574400, 57244753133568000, 1647544166940672000, 49957730917981286400, 1591303422125646028800
Offset: 0

Views

Author

Seiichi Manyama, Mar 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[Binomial[n-1,n-3*k]/k!, {k,0,n/3}], {n,0,20}] (* Vaclav Kotesovec, Mar 17 2023 *)
    With[{nn=20},CoefficientList[Series[Exp[(x/(1-x))^3],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Sep 07 2024 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp((x/(1-x))^3)))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=3, i, (-1)^(j-3)*j*binomial(-3, j-3)*v[i-j+1]/(i-j)!)); v;

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} binomial(n-1,n-3*k)/k!.
a(0) = 1; a(n) = (n-1)! * Sum_{k=3..n} (-1)^(k-3) * k * binomial(-3,k-3) * a(n-k)/(n-k)!.
From Vaclav Kotesovec, Mar 17 2023: (Start)
a(n) = 4*(n-1)*a(n-1) - 6*(n-2)*(n-1)*a(n-2) + (n-2)*(n-1)*(4*n - 9)*a(n-3) - (n-4)*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ 3^(1/8) * exp(-1/4 + 5*3^(-1/4)*n^(1/4)/8 - sqrt(3*n)/2 + 4*3^(-3/4)*n^(3/4) - n) * n^(n - 1/8) / 2 * (1 - (409/2560)*3^(1/4)/n^(1/4)). (End)

A364940 E.g.f. satisfies A(x) = exp( x*A(x) / (1 - x*A(x))^3 ).

Original entry on oeis.org

1, 1, 9, 124, 2525, 68616, 2338357, 96004672, 4616135001, 254542038400, 15839013320801, 1098078537291264, 83940831427695541, 7014958697801657344, 636298582947212386125, 62261039244978489081856, 6537251350698278868150833, 733159568772947522820538368
Offset: 0

Views

Author

Seiichi Manyama, Aug 14 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (n+1)^(k-1)*binomial(n+2*k-1, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} (n+1)^(k-1) * binomial(n+2*k-1,n-k)/k!.
E.g.f.: (1/x) * Series_Reversion( x*exp(-x/(1 - x)^3) ). - Seiichi Manyama, Sep 23 2024

A387244 Expansion of e.g.f. exp(x^2/(1-x)^4).

Original entry on oeis.org

1, 0, 2, 24, 252, 2880, 38280, 594720, 10565520, 209502720, 4558407840, 107702179200, 2744400415680, 75016089308160, 2189152249764480, 67906418407027200, 2230160988344889600, 77271779968704921600, 2815893910009609228800, 107629691727791474841600, 4304364116456244429388800
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 24 2025

Keywords

Comments

In general, if s >= 1, 1 <= r <= s and e.g.f. = exp(x^r/(1-x)^s) then for n > 0, a(n) = n! * Sum_{k=1..n} binomial(n + (s-r)*k - 1, s*k - 1)/k!.

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x^2/(1-x)^4))); [Factorial(n-1)*b[n]: n in [1..m]]; // Vincenzo Librandi, Aug 25 2025
  • Mathematica
    nmax=20; CoefficientList[Series[E^(x^2/(1-x)^4), {x, 0, nmax}], x] * Range[0, nmax]!
    nmax=20; Join[{1}, Table[n!*Sum[Binomial[n+2*k-1, 4*k-1]/k!, {k, 1, n}], {n, 1, nmax}]]
    Join[{1}, Table[n!*n*(n - 1)*(n + 1)/6 * HypergeometricPFQ[{1 - n/2, 3/2 - n/2, 1 + n/2, 3/2 + n/2}, {5/4, 3/2, 7/4, 2}, 1/16], {n, 1, 20}]]

Formula

For n > 0, a(n) = n! * Sum_{k=1..n} binomial(n + 2*k - 1, 4*k - 1)/k!.
a(n) = 5*(n-1)*a(n-1) - 2*(n-1)*(5*n-11)*a(n-2) + 2*(n-2)*(n-1)*(5*n-14)*a(n-3) - 5*(n-4)*(n-3)*(n-2)*(n-1)*a(n-4) + (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-5).
a(n) ~ 2^(1/5) * 5^(-1/2) * exp(1/80 - 2^(-9/5)*n^(2/5)/3 + 5*2^(-8/5)*n^(4/5) - n) * n^(n - 1/10).
Showing 1-10 of 13 results. Next