A351767
Expansion of e.g.f. exp( x/(1-x)^3 ) / (1-x)^3.
Original entry on oeis.org
1, 4, 25, 214, 2293, 29176, 427189, 7049890, 129178249, 2597880268, 56815155121, 1341068392654, 33951269718205, 917020113259264, 26305693331946253, 798293630021120986, 25540244079135784849, 858854698277997113620, 30274382852181639467209
Offset: 0
-
Table[n!*Sum[Binomial[n + 2*k + 2, n - k]/k!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 25 2023 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x/(1-x)^3)/(1-x)^3))
-
a(n) = n! * sum(k=0, n, binomial(n+2*k+2,n-k)/k!); \\ Winston de Greef, Mar 18 2023
A361600
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} binomial(n+(k-1)*j,k*j)/j!.
Original entry on oeis.org
1, 1, 2, 1, 2, 5, 1, 2, 7, 16, 1, 2, 9, 34, 65, 1, 2, 11, 58, 209, 326, 1, 2, 13, 88, 473, 1546, 1957, 1, 2, 15, 124, 881, 4626, 13327, 13700, 1, 2, 17, 166, 1457, 10526, 52537, 130922, 109601, 1, 2, 19, 214, 2225, 20326, 145867, 677594, 1441729, 986410
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, ...
5, 7, 9, 11, 13, 15, ...
16, 34, 58, 88, 124, 166, ...
65, 209, 473, 881, 1457, 2225, ...
326, 1546, 4626, 10526, 20326, 35226, ...
-
T(n, k) = n!*sum(j=0, n, binomial(n+(k-1)*j, k*j)/j!);
A361626
Expansion of e.g.f. exp( x/(1-x)^3 ) / (1-x)^2.
Original entry on oeis.org
1, 3, 17, 139, 1437, 17711, 252133, 4059567, 72779129, 1435276027, 30836352441, 716101686323, 17858449006357, 475653606922599, 13467411746316557, 403708230041927191, 12767545998797849073, 424670548932688771187, 14814998283177691422049
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x/(1-x)^3)/(1-x)^2))
-
a(n)=n! * sum(k=0, n, binomial(n+2*k+1,n-k)/k!) \\ Winston de Greef, Mar 18 2023
A375172
Expansion of e.g.f. exp( x^2/(1-x)^3 ) / (1-x).
Original entry on oeis.org
1, 1, 4, 30, 276, 2940, 36120, 507360, 8032080, 141235920, 2725107840, 57151211040, 1293129351360, 31376876731200, 812303844992640, 22338850742208000, 650081402588217600, 19951131574037664000, 643805564147435289600, 21785365857810973017600
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x^2/(1-x)^3)/(1-x)))
-
a(n) = n!*sum(k=0, n\2, binomial(n+k, n-2*k)/k!);
A373771
Expansion of e.g.f. exp(x^2 / (2 * (1 - x)^3)) / (1 - x).
Original entry on oeis.org
1, 1, 3, 18, 147, 1425, 15855, 200130, 2838465, 44767485, 777046095, 14705245170, 301014595035, 6621102973485, 155640761791515, 3891902825660850, 103115436832433025, 2884715829245475225, 84950805438277854075, 2626194012669689512050
Offset: 0
A377599
E.g.f. satisfies A(x) = exp( x * A(x) / (1-x)^2 ) / (1-x).
Original entry on oeis.org
1, 2, 13, 145, 2277, 46461, 1172713, 35374697, 1243296169, 49940748073, 2258238723021, 113567169318285, 6289161888870061, 380364426242671469, 24948313525570134001, 1764095427822803465521, 133782341347522663175889, 10832097536377585282160337, 932693691617428946786304661
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x/(1-x)^3))/(1-x)))
-
a(n) = n!*sum(k=0, n, (k+1)^(k-1)*binomial(n+2*k, n-k)/k!);
Showing 1-6 of 6 results.