A361599
Expansion of e.g.f. exp( x/(1-x)^3 ) / (1-x).
Original entry on oeis.org
1, 2, 11, 88, 881, 10526, 145867, 2294636, 40302593, 780263866, 16483592171, 376901809472, 9265228770481, 243493769839958, 6808261249400171, 201697053847178836, 6308214318127014017, 207622266953125336946, 7170928402389293540683, 259247888385780787392296
Offset: 0
-
Table[n! * Sum[Binomial[n+2*k,3*k]/k!, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Mar 17 2023 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x/(1-x)^3)/(1-x)))
A361598
Expansion of e.g.f. exp( x/(1-x)^2 ) / (1-x).
Original entry on oeis.org
1, 2, 9, 58, 473, 4626, 52537, 677594, 9762993, 155175778, 2693718281, 50657791482, 1025158123849, 22198908725618, 511885585833273, 12517101011344666, 323402336324055137, 8800318580852865474, 251497162228635927433, 7529081846683064675258
Offset: 0
-
Table[n! * Sum[Binomial[n+k,2*k]/k!, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Mar 17 2023 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x/(1-x)^2)/(1-x)))
A361616
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} binomial(n+(k-1)*(j+1),n-j)/j!.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 7, 1, 1, 4, 15, 34, 1, 1, 5, 25, 103, 209, 1, 1, 6, 37, 214, 885, 1546, 1, 1, 7, 51, 373, 2293, 9051, 13327, 1, 1, 8, 67, 586, 4721, 29176, 106843, 130922, 1, 1, 9, 85, 859, 8481, 70981, 427189, 1425495, 1441729, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
1, 7, 15, 25, 37, 51, ...
1, 34, 103, 214, 373, 586, ...
1, 209, 885, 2293, 4721, 8481, ...
1, 1546 ,9051, 29176, 70981, 146046, ...
-
T(n,k) = n! * sum(j=0, n, binomial(n+(k-1)*(j+1), n-j)/j!);
A361607
a(n) = n! * Sum_{k=0..n} binomial(n+(n-1)*k,n*k)/k!.
Original entry on oeis.org
1, 2, 9, 88, 1457, 35226, 1158097, 49554464, 2664907233, 175012404562, 13725980234201, 1263867766626312, 134795551989905809, 16464112185873351338, 2280346417134518709537, 355060682992984062716176
Offset: 0
-
Table[Sum[Binomial[n, k]*(n*k + n - k)!/(n*k)!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 17 2023 *)
-
a(n) = sum(k=0, n, (n*k+n-k)!/(n*k)!*binomial(n, k));
Showing 1-4 of 4 results.