A361600
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} binomial(n+(k-1)*j,k*j)/j!.
Original entry on oeis.org
1, 1, 2, 1, 2, 5, 1, 2, 7, 16, 1, 2, 9, 34, 65, 1, 2, 11, 58, 209, 326, 1, 2, 13, 88, 473, 1546, 1957, 1, 2, 15, 124, 881, 4626, 13327, 13700, 1, 2, 17, 166, 1457, 10526, 52537, 130922, 109601, 1, 2, 19, 214, 2225, 20326, 145867, 677594, 1441729, 986410
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, ...
5, 7, 9, 11, 13, 15, ...
16, 34, 58, 88, 124, 166, ...
65, 209, 473, 881, 1457, 2225, ...
326, 1546, 4626, 10526, 20326, 35226, ...
-
T(n, k) = n!*sum(j=0, n, binomial(n+(k-1)*j, k*j)/j!);
A343884
Expansion of e.g.f. exp( x/(1-x)^2 ) / (1-x)^2.
Original entry on oeis.org
1, 3, 15, 103, 885, 9051, 106843, 1425495, 21166953, 345678355, 6150501831, 118313311623, 2444917863325, 53982840948843, 1267645359117075, 31531781398100791, 827910838693667793, 22874802838645217955, 663243613324249850623, 20130710499843811837095
Offset: 0
-
Table[n!*Sum[Binomial[n + k + 1, n - k]/k!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 25 2023 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x/(1-x)^2)/(1-x)^2))
-
a(n) = n! * sum(k=0, n, binomial(n+k+1,n-k)/k!) \\ Winston de Greef, Mar 19 2023
A380664
Expansion of e.g.f. (1/x) * Series_Reversion( x * (1 - x) * exp(-x/(1 - x)^2) ).
Original entry on oeis.org
1, 2, 17, 268, 6277, 196416, 7716109, 365398496, 20271580137, 1290027358720, 92653747607401, 7414981595716608, 654373744057368493, 63136350047908917248, 6612064512998173129125, 747016321343021395603456, 90564758322246657646854481, 11727981253987656671672008704
Offset: 0
A377595
E.g.f. satisfies A(x) = exp( x * A(x) / (1-x) ) / (1-x).
Original entry on oeis.org
1, 2, 11, 103, 1377, 24101, 523813, 13636463, 414246017, 14396807161, 563682761541, 24559156435595, 1178780540094193, 61810491468265541, 3515914378433242997, 215647516162031069191, 14187967957218808201089, 996767406049512569338481, 74478502236949781909301253
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x/(1-x)^2))/(1-x)))
-
a(n) = n!*sum(k=0, n, (k+1)^(k-1)*binomial(n+k, n-k)/k!);
A373773
Expansion of e.g.f. exp(x^3 / (6 * (1 - x)^2)) / (1 - x).
Original entry on oeis.org
1, 1, 2, 7, 36, 240, 1930, 17990, 189840, 2233000, 28949200, 410009600, 6297999400, 104275571400, 1851050401200, 35065930299400, 705993054166400, 15051593241484800, 338705933426660800, 8021585392026606400, 199416162740963168000, 5191567315003621552000
Offset: 0
Showing 1-5 of 5 results.