cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A361600 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} binomial(n+(k-1)*j,k*j)/j!.

Original entry on oeis.org

1, 1, 2, 1, 2, 5, 1, 2, 7, 16, 1, 2, 9, 34, 65, 1, 2, 11, 58, 209, 326, 1, 2, 13, 88, 473, 1546, 1957, 1, 2, 15, 124, 881, 4626, 13327, 13700, 1, 2, 17, 166, 1457, 10526, 52537, 130922, 109601, 1, 2, 19, 214, 2225, 20326, 145867, 677594, 1441729, 986410
Offset: 0

Views

Author

Seiichi Manyama, Mar 17 2023

Keywords

Examples

			Square array begins:
    1,    1,    1,     1,     1,     1, ...
    2,    2,    2,     2,     2,     2, ...
    5,    7,    9,    11,    13,    15, ...
   16,   34,   58,    88,   124,   166, ...
   65,  209,  473,   881,  1457,  2225, ...
  326, 1546, 4626, 10526, 20326, 35226, ...
		

Crossrefs

Columns k=0..3 give A000522, A002720, A361598, A361599.
Main diagonal gives A361607.
Cf. A293012.

Programs

  • PARI
    T(n, k) = n!*sum(j=0, n, binomial(n+(k-1)*j, k*j)/j!);

Formula

E.g.f. of column k: exp( x/(1 - x)^k ) / (1-x).
T(n,k) = Sum_{j=0..n} (n+(k-1)*j)!/(k*j)! * binomial(n,j).

A343884 Expansion of e.g.f. exp( x/(1-x)^2 ) / (1-x)^2.

Original entry on oeis.org

1, 3, 15, 103, 885, 9051, 106843, 1425495, 21166953, 345678355, 6150501831, 118313311623, 2444917863325, 53982840948843, 1267645359117075, 31531781398100791, 827910838693667793, 22874802838645217955, 663243613324249850623, 20130710499843811837095
Offset: 0

Views

Author

Seiichi Manyama, Mar 18 2023

Keywords

Crossrefs

Column k=2 of A361616.

Programs

  • Mathematica
    Table[n!*Sum[Binomial[n + k + 1, n - k]/k!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 25 2023 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x/(1-x)^2)/(1-x)^2))
    
  • PARI
    a(n) = n! * sum(k=0, n, binomial(n+k+1,n-k)/k!) \\ Winston de Greef, Mar 19 2023

Formula

a(n) = n! * Sum_{k=0..n} binomial(n+k+1,n-k)/k! = Sum_{k=0..n} (n+k+1)!/(2*k+1)! * binomial(n,k).
From Vaclav Kotesovec, Mar 25 2023: (Start)
a(n) ~ exp(-1/12 + 3*2^(-2/3)*n^(2/3) - n) * n^(n + 1/2) / sqrt(6) * (1 + 2^(1/3)/n^(1/3) + 323/(360*2^(1/3)*n^(2/3))).
a(n) = 3*n*a(n-1) - 3*(n-1)^2*a(n-2) + (n-2)*(n-1)^2*a(n-3). (End)

A380664 Expansion of e.g.f. (1/x) * Series_Reversion( x * (1 - x) * exp(-x/(1 - x)^2) ).

Original entry on oeis.org

1, 2, 17, 268, 6277, 196416, 7716109, 365398496, 20271580137, 1290027358720, 92653747607401, 7414981595716608, 654373744057368493, 63136350047908917248, 6612064512998173129125, 747016321343021395603456, 90564758322246657646854481, 11727981253987656671672008704
Offset: 0

Views

Author

Seiichi Manyama, Jan 30 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (n+1)^(k-1)*binomial(2*n+k, n-k)/k!);

Formula

E.g.f. A(x) satisfies A(x) = exp(x * A(x)/(1 - x*A(x))^2)/(1 - x*A(x)).
a(n) = n! * Sum_{k=0..n} (n+1)^(k-1) * binomial(2*n+k,n-k)/k!.

A377595 E.g.f. satisfies A(x) = exp( x * A(x) / (1-x) ) / (1-x).

Original entry on oeis.org

1, 2, 11, 103, 1377, 24101, 523813, 13636463, 414246017, 14396807161, 563682761541, 24559156435595, 1178780540094193, 61810491468265541, 3515914378433242997, 215647516162031069191, 14187967957218808201089, 996767406049512569338481, 74478502236949781909301253
Offset: 0

Views

Author

Seiichi Manyama, Nov 14 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x/(1-x)^2))/(1-x)))
    
  • PARI
    a(n) = n!*sum(k=0, n, (k+1)^(k-1)*binomial(n+k, n-k)/k!);

Formula

E.g.f.: exp( -LambertW(-x/(1-x)^2) )/(1-x).
a(n) = n! * Sum_{k=0..n} (k+1)^(k-1) * binomial(n+k,n-k)/k!.
a(n) ~ sqrt(1 + 2*exp(-1) - sqrt(1 + 4*exp(-1))) * sqrt(1 + 4*exp(-1) - sqrt(1 + 4*exp(-1))) * 2^(n + 3/2) * n^(n-1) / ((sqrt(1 + 4*exp(-1)) - 1)^(5/2) * exp(n) * (2 + exp(1) - exp(1/2)*sqrt(4 + exp(1)))^n). - Vaclav Kotesovec, Aug 05 2025

A373773 Expansion of e.g.f. exp(x^3 / (6 * (1 - x)^2)) / (1 - x).

Original entry on oeis.org

1, 1, 2, 7, 36, 240, 1930, 17990, 189840, 2233000, 28949200, 410009600, 6297999400, 104275571400, 1851050401200, 35065930299400, 705993054166400, 15051593241484800, 338705933426660800, 8021585392026606400, 199416162740963168000, 5191567315003621552000
Offset: 0

Views

Author

Seiichi Manyama, Jun 18 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\3, binomial(n-k, n-3*k)/(6^k*k!));

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} binomial(n-k,n-3*k)/(6^k * k!).
From Vaclav Kotesovec, Jun 18 2024: (Start)
Recurrence: 6*a(n) = 6*(3*n-2)*a(n-1) - 6*(n-1)*(3*n-4)*a(n-2) + 3*(n-2)*(n-1)*(2*n-3)*a(n-3) - (n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ 3^(-1/3) * exp(19/72 - 3^(-2/3)*n^(1/3) + 3^(2/3)*n^(2/3)/2 - n) * n^(n + 1/6). (End)
Showing 1-5 of 5 results.