cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A378041 E.g.f. satisfies A(x) = exp( x * A(x)^2 / (1-x) ) / (1-x).

Original entry on oeis.org

1, 2, 15, 220, 4873, 145446, 5479639, 249736936, 13366083889, 821950542730, 57117681241471, 4426656694204020, 378577567656396409, 35416929943920575662, 3598006167290727776263, 394460149364865110384896, 46420283015545052734709473, 5836509710708683465245181458
Offset: 0

Views

Author

Seiichi Manyama, Nov 15 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x/(1-x)^3)/2)/(1-x)))
    
  • PARI
    a(n) = n!*sum(k=0, n, (2*k+1)^(k-1)*binomial(n+2*k, n-k)/k!);

Formula

E.g.f.: exp( -LambertW(-2*x/(1-x)^3)/2 )/(1-x).
a(n) = n! * Sum_{k=0..n} (2*k+1)^(k-1) * binomial(n+2*k,n-k)/k!.
a(n) ~ 3^(n + 5/3) * c^((n + 2)/3) * n^(n-1) / (exp(n) * (3*c^(1/3) - c^(2/3)*3^(1/3) * exp(1/3) + 2*3^(2/3) * exp(2/3))^n) / (sqrt(2) * (c^(2/3) - 2*3^(1/3) * exp(1/3))^(5/2) * sqrt((3^(2/3)*c^(2/3) - 6*exp(1/3)) / (9*3^(1/3)*c^(2/3) - 8*3^(1/3)*c^(2/3) * exp(1) + 8*3^(2/3)*exp(4/3) - 15*3^(1/6) * exp(1/3)*(c/sqrt(3)) + 2*c^(1/3)*exp(2/3) * (c + 15)))), where c = 9 + sqrt(81 + 24*exp(1)). - Vaclav Kotesovec, Nov 15 2024

A378042 E.g.f. satisfies A(x) = exp( x * A(x)^3 / (1-x) ) / (1-x).

Original entry on oeis.org

1, 2, 19, 385, 12041, 512101, 27616705, 1806241151, 138948411649, 12294333869545, 1230146587626041, 137347201671983227, 16928938651265737585, 2283232081600363345037, 334480117852142180147377, 52888942867094899879009111, 8978241760087200983202588545, 1628601738501672908949881316433
Offset: 0

Views

Author

Seiichi Manyama, Nov 15 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-3*x/(1-x)^4)/3)/(1-x)))
    
  • PARI
    a(n) = n!*sum(k=0, n, (3*k+1)^(k-1)*binomial(n+3*k, n-k)/k!);

Formula

E.g.f.: exp( -LambertW(-3*x/(1-x)^4)/3 )/(1-x).
a(n) = n! * Sum_{k=0..n} (3*k+1)^(k-1) * binomial(n+3*k,n-k)/k!.
Showing 1-2 of 2 results.