cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A361616 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} binomial(n+(k-1)*(j+1),n-j)/j!.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 7, 1, 1, 4, 15, 34, 1, 1, 5, 25, 103, 209, 1, 1, 6, 37, 214, 885, 1546, 1, 1, 7, 51, 373, 2293, 9051, 13327, 1, 1, 8, 67, 586, 4721, 29176, 106843, 130922, 1, 1, 9, 85, 859, 8481, 70981, 427189, 1425495, 1441729, 1
Offset: 0

Views

Author

Seiichi Manyama, Mar 18 2023

Keywords

Examples

			Square array begins:
  1,    1,    1,     1,     1,      1, ...
  1,    2,    3,     4,     5,      6, ...
  1,    7,   15,    25,    37,     51, ...
  1,   34,  103,   214,   373,    586, ...
  1,  209,  885,  2293,  4721,   8481, ...
  1, 1546 ,9051, 29176, 70981, 146046, ...
		

Crossrefs

Columns k=0..3 give A000012, A002720, A343884, A351767.
Main diagonal gives A361617.

Programs

  • PARI
    T(n,k) = n! * sum(j=0, n, binomial(n+(k-1)*(j+1), n-j)/j!);

Formula

E.g.f. of column k: exp( x/(1-x)^k ) / (1-x)^k.
T(n,k) = Sum_{j=0..n} (n+(k-1)*(j+1))!/(k*j+k-1)! * binomial(n,j) for k > 0.

A361626 Expansion of e.g.f. exp( x/(1-x)^3 ) / (1-x)^2.

Original entry on oeis.org

1, 3, 17, 139, 1437, 17711, 252133, 4059567, 72779129, 1435276027, 30836352441, 716101686323, 17858449006357, 475653606922599, 13467411746316557, 403708230041927191, 12767545998797849073, 424670548932688771187, 14814998283177691422049
Offset: 0

Views

Author

Seiichi Manyama, Mar 18 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x/(1-x)^3)/(1-x)^2))
    
  • PARI
    a(n)=n! * sum(k=0, n, binomial(n+2*k+1,n-k)/k!) \\ Winston de Greef, Mar 18 2023

Formula

a(n) = n! * Sum_{k=0..n} binomial(n+2*k+1,n-k)/k! = Sum_{k=0..n} (n+2*k+1)!/(3*k+1)! * binomial(n,k).
a(n) ~ 3^(5/8) * exp(-1/27 - 3^(3/4)*n^(1/4)/72 + sqrt(3*n)/6 + 4*3^(-3/4)*n^(3/4) - n) * n^(n + 3/8) / 6 * (1 + 63037 * 3^(1/4)/(69120 * n^(1/4))). - Vaclav Kotesovec, Mar 29 2023

A375225 Expansion of e.g.f. exp( x^2/(1-x)^3 ) / (1-x)^3.

Original entry on oeis.org

1, 3, 14, 96, 876, 9780, 127200, 1877400, 30947280, 563114160, 11202135840, 241655641920, 5614182826560, 139647350082240, 3700648372861440, 104032358410780800, 3090961262246457600, 96747013002684844800, 3180863885996673676800, 109570715078766355814400
Offset: 0

Views

Author

Seiichi Manyama, Aug 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[x^2/(1-x)^3]/(1-x)^3,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Nov 20 2024 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x^2/(1-x)^3)/(1-x)^3))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, binomial(n+2+k, n-2*k)/k!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} binomial(n+2+k,n-2*k)/k!.

A377967 Expansion of e.g.f. (1+x)^3 * exp(x*(1+x)^3).

Original entry on oeis.org

1, 4, 19, 124, 961, 8236, 79339, 840484, 9595009, 117764596, 1542837091, 21406165804, 313381177729, 4822681240924, 77704955681851, 1307128152596116, 22899018541506049, 416756647023727204, 7863586717014612019, 153550319029835965276, 3097694623619639050561
Offset: 0

Views

Author

Seiichi Manyama, Nov 12 2024

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[(1+x)^3 Exp[x*(1+x)^3],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 28 2025 *)
  • PARI
    a(n, s=3, t=3) = n!*sum(k=0, n, binomial(t*k+s, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} binomial(3*k+3,n-k) / k!.
Showing 1-4 of 4 results.