cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A364938 E.g.f. satisfies A(x) = exp( x / (1 - x*A(x))^3 ).

Original entry on oeis.org

1, 1, 7, 73, 1141, 23821, 623341, 19650793, 725478601, 30714824377, 1467394945561, 78103975313101, 4583805610661245, 294093243091237669, 20479664124384110101, 1538423857251845781841, 124007828871708989798161, 10676865465119963987425009
Offset: 0

Views

Author

Seiichi Manyama, Aug 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[n! * Sum[(n-k+1)^(k-1) * Binomial[n+2*k-1,n-k]/k!, {k,0,n}], {n,1,20}]] (* Vaclav Kotesovec, Nov 18 2023 *)
  • PARI
    a(n) = n!*sum(k=0, n, (n-k+1)^(k-1)*binomial(n+2*k-1, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} (n-k+1)^(k-1) * binomial(n+2*k-1,n-k)/k!.
a(n) ~ sqrt(s*(1 + 2*r*s) / (4 + 3*r - 12*r*s + 12*r^2*s^2 - 4*r^3*s^3)) * n^(n-1) / (exp(n) * r^n), where r = 0.1811100305436879929789759231994897963241226689... and s = 1.893740207738561813713992833266450862854198944672... are real roots of the system of equations exp(r/(1 - r*s)^3) = s, 3*s*r^2 = (1 - r*s)^4. - Vaclav Kotesovec, Nov 18 2023

A364939 E.g.f. satisfies A(x) = exp( x*A(x) / (1 - x*A(x))^2 ).

Original entry on oeis.org

1, 1, 7, 82, 1421, 32856, 953107, 33316816, 1364109273, 64057409920, 3394727354591, 200445915043584, 13050860745456613, 928976320999078912, 71773343988758253675, 5982029183718123513856, 535011546414154955711153, 51110145581257562326401024
Offset: 0

Views

Author

Seiichi Manyama, Aug 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[(n+1)^(k-1) * Binomial[n+k-1,n-k]/k!, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Nov 11 2023 *)
  • PARI
    a(n) = n!*sum(k=0, n, (n+1)^(k-1)*binomial(n+k-1, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} (n+1)^(k-1) * binomial(n+k-1,n-k)/k!.
a(n) ~ sqrt(((321*(3852 + 215*sqrt(321)))^(1/3) - 321^(2/3)/(3852 + 215*sqrt(321))^(1/3)) / 107) * (4 + ((83 - 3*sqrt(321))/2)^(1/3) + ((83 + 3*sqrt(321))/2)^(1/3))^n * exp(((215 - 12*sqrt(321))^(1/3) + (215 + 12*sqrt(321))^(1/3) - 1) * (n+1)/12 - n) * n^(n-1) / 3^(n + 1/2). - Vaclav Kotesovec, Nov 11 2023
E.g.f.: (1/x) * Series_Reversion( x*exp(-x/(1 - x)^2) ). - Seiichi Manyama, Sep 23 2024

A365032 E.g.f. satisfies A(x) = exp(x * A(x) * (1 + x * A(x))^3).

Original entry on oeis.org

1, 1, 9, 106, 1949, 47376, 1443757, 53003392, 2278044729, 112267072000, 6242682602321, 386708915902464, 26411820455554261, 1971959747016534016, 159794005364013403125, 13967707431203856449536, 1310083060716906045342833, 131245686122586065682628608
Offset: 0

Views

Author

Seiichi Manyama, Aug 17 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (n+1)^(k-1)*binomial(3*k, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} (n+1)^(k-1) * binomial(3*k,n-k)/k!.
E.g.f.: (1/x) * Series_Reversion( x*exp(-x*(1 + x)^3) ). - Seiichi Manyama, Sep 23 2024
Showing 1-3 of 3 results.