cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A293012 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(x/(1 - x)^k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 13, 1, 1, 1, 7, 31, 73, 1, 1, 1, 9, 55, 241, 501, 1, 1, 1, 11, 85, 529, 2261, 4051, 1, 1, 1, 13, 121, 961, 6121, 24781, 37633, 1, 1, 1, 15, 163, 1561, 13041, 82711, 309835, 394353, 1, 1, 1, 17, 211, 2353, 24101, 207001, 1273567, 4342241, 4596553, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 28 2017

Keywords

Examples

			E.g.f. of column k: A_k(x) =  1 + x/1! + (2*k + 1)*x^2/2! + (3*k^2 + 9*k + 1)*x^3/3! + (4*k^3 + 36*k^2 + 32*k + 1)*x^4/4! + ...
Square array begins:
  1,   1,    1,    1,     1,     1,  ...
  1,   1,    1,    1,     1,     1,  ...
  1,   3,    5,    7,     9,    11,  ...
  1,  13,   31,   55,    85,   121,  ...
  1,  73,  241,  529,   961,  1561,  ...
  1, 501, 2261, 6121, 13041, 24101,  ...
		

Crossrefs

Columns k=0..4 give A000012, A000262, A082579, A091695, A361283.
Main diagonal gives A293013.

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[x/(1 - x)^k], {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
  • PARI
    T(n, k) = n!*sum(j=0, n, binomial(n+(k-1)*j-1, n-j)/j!); \\ Seiichi Manyama, Mar 06 2023

Formula

E.g.f. of column k: exp(x/(1 - x)^k).
From Seiichi Manyama, Oct 21 2017: (Start)
Let B(j,k) = (-1)^(j-1)*binomial(-k,j-1) for j>0 and k>=0.
A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..n} j*B(j,k)*A(n-j,k)/(n-j)! for n > 0. (End)
A(n,k) = n! * Sum_{j=0..n} binomial(n+(k-1)*j-1,n-j)/j!. - Seiichi Manyama, Mar 06 2023

A361280 Expansion of e.g.f. exp(x * (1+x)^4).

Original entry on oeis.org

1, 1, 9, 61, 481, 4881, 55321, 682669, 9343041, 139078081, 2216425321, 37736834301, 683184324769, 13064452686481, 262867726142841, 5549111222344621, 122499654278797441, 2819926900630750209, 67539541277010100681, 1679557316488693881661
Offset: 0

Views

Author

Seiichi Manyama, Mar 06 2023

Keywords

Crossrefs

Column k=4 of A361277.
Cf. A361283.

Programs

  • Maple
    A361280 := proc(n)
        n!*add(binomial(4*k,n-k)/k!,k=0..n) ;
    end proc:
    seq(A361280(n),n=0..60) ; # R. J. Mathar, Mar 12 2023
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x*(1+x)^4)))
    
  • PARI
    a(n) = n!*sum(k=0, n, binomial(4*k, n-k)/k!);
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, i, j*binomial(4, j-1)*v[i-j+1]/(i-j)!)); v;

Formula

a(n) = n! * Sum_{k=0..n} binomial(4*k,n-k)/k!.
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} k * binomial(4,k-1) * a(n-k)/(n-k)!.
D-finite with recurrence a(n) -a(n-1) +8*(-n+1)*a(n-2) -18*(n-1)*(n-2)*a(n-3) -16*(n-1)*(n-2)*(n-3)*a(n-4) -5*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Mar 12 2023
a(n) ~ 5^(n/5 - 1/2) * n^(4*n/5) * exp(-256/15625 - 249*5^(4/5)*n^(1/5)/78125 + 236*5^(3/5)*n^(2/5)/9375 + 22*5^(2/5)*n^(3/5)/125 + 4*5^(-4/5)*n^(4/5) - 4*n/5) * (1 + 15409886*5^(1/5)/(48828125*n^(1/5))). - Vaclav Kotesovec, Nov 11 2023

A387244 Expansion of e.g.f. exp(x^2/(1-x)^4).

Original entry on oeis.org

1, 0, 2, 24, 252, 2880, 38280, 594720, 10565520, 209502720, 4558407840, 107702179200, 2744400415680, 75016089308160, 2189152249764480, 67906418407027200, 2230160988344889600, 77271779968704921600, 2815893910009609228800, 107629691727791474841600, 4304364116456244429388800
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 24 2025

Keywords

Comments

In general, if s >= 1, 1 <= r <= s and e.g.f. = exp(x^r/(1-x)^s) then for n > 0, a(n) = n! * Sum_{k=1..n} binomial(n + (s-r)*k - 1, s*k - 1)/k!.

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x^2/(1-x)^4))); [Factorial(n-1)*b[n]: n in [1..m]]; // Vincenzo Librandi, Aug 25 2025
  • Mathematica
    nmax=20; CoefficientList[Series[E^(x^2/(1-x)^4), {x, 0, nmax}], x] * Range[0, nmax]!
    nmax=20; Join[{1}, Table[n!*Sum[Binomial[n+2*k-1, 4*k-1]/k!, {k, 1, n}], {n, 1, nmax}]]
    Join[{1}, Table[n!*n*(n - 1)*(n + 1)/6 * HypergeometricPFQ[{1 - n/2, 3/2 - n/2, 1 + n/2, 3/2 + n/2}, {5/4, 3/2, 7/4, 2}, 1/16], {n, 1, 20}]]

Formula

For n > 0, a(n) = n! * Sum_{k=1..n} binomial(n + 2*k - 1, 4*k - 1)/k!.
a(n) = 5*(n-1)*a(n-1) - 2*(n-1)*(5*n-11)*a(n-2) + 2*(n-2)*(n-1)*(5*n-14)*a(n-3) - 5*(n-4)*(n-3)*(n-2)*(n-1)*a(n-4) + (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-5).
a(n) ~ 2^(1/5) * 5^(-1/2) * exp(1/80 - 2^(-9/5)*n^(2/5)/3 + 5*2^(-8/5)*n^(4/5) - n) * n^(n - 1/10).

A367790 E.g.f. satisfies A(x) = exp( x/(1-x)^4 * A(x) ).

Original entry on oeis.org

1, 1, 11, 148, 2669, 62056, 1777927, 60692920, 2408692505, 109074596320, 5553702114731, 314208715035304, 19561795753879909, 1329317730339826384, 97924919301787209647, 7773978186375852940696, 661702605336795904770353, 60119367618216155944350400
Offset: 0

Views

Author

Seiichi Manyama, Nov 30 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x/(1-x)^4))))

Formula

E.g.f.: exp( -LambertW(-x/(1-x)^4) ).
a(n) = n! * Sum_{k=0..n} (k+1)^(k-1) * binomial(n+3*k-1,n-k)/k!.

A386514 Expansion of e.g.f. exp(x^2/(1-x)^3).

Original entry on oeis.org

1, 0, 2, 18, 156, 1560, 18480, 254520, 3973200, 68947200, 1312748640, 27175024800, 607314818880, 14566195163520, 373027570755840, 10154293067318400, 292659790712889600, 8899747730037964800, 284685195814757337600, 9553060139009702515200, 335468448755976164428800
Offset: 0

Views

Author

Enrique Navarrete, Aug 23 2025

Keywords

Comments

For n > 0, a(n) is the number of ways to linearly order n distinguishable objects into one or several lines and then choose 2 objects from each line. If the lines are also linearly ordered see A364524.
A001804(n) is the number of ways if only 1 line is used.

Examples

			a(6)=18480 since there are 10800 ways using one line, 4320 ways with 2 lines using 2 and 4 objects, 3240 ways with 2 lines of 3 objects each, and 120 ways with 3 lines of 2 objects each.
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[E^(x^2/(1-x)^3), {x, 0, nmax}], x] * Range[0, nmax]! (* or *)
    nmax = 20; Join[{1}, Table[n!*Sum[Binomial[n + k - 1, 3*k - 1]/k!, {k, 1, n}], {n, 1, nmax}]] (* Vaclav Kotesovec, Aug 24 2025 *)

Formula

From Vaclav Kotesovec, Aug 24 2025: (Start)
For n > 0, a(n) = n! * Sum_{k=1..n} binomial(n+k-1, 3*k-1) / k!.
a(n) = 4*(n-1)*a(n-1) - 2*(n-1)*(3*n-7)*a(n-2) + (n-2)*(n-1)*(4*n-11)*a(n-3) - (n-4)*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ 3^(1/8) * exp(1/27 - 3^(-5/4)*n^(1/4)/8 - 3^(-1/2)*n^(1/2)/2 + 4*3^(-3/4)*n^(3/4) - n) * n^(n-1/8) / 2. (End)
Showing 1-5 of 5 results.