cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A361283 Expansion of e.g.f. exp(x/(1-x)^4).

Original entry on oeis.org

1, 1, 9, 85, 961, 13041, 207001, 3746149, 75832065, 1693615681, 41302616041, 1090835399061, 30988423000129, 941461990360945, 30439632977968761, 1042973073239321701, 37731609890300935681, 1436586994020158747649
Offset: 0

Views

Author

Seiichi Manyama, Mar 06 2023

Keywords

Crossrefs

Column k=4 of A293012.
Cf. A361280.

Programs

  • Maple
    A361283 := proc(n)
        n!*add(binomial(n+3*k-1,n-k)/k!,k=0..n) ;
    end proc:
    seq(A361283(n),n=0..40) ; # R. J. Mathar, Mar 12 2023
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x/(1-x)^4)))
    
  • PARI
    a(n) = n!*sum(k=0, n, (-1)^(n-k)*binomial(-4*k, n-k)/k!);
    
  • PARI
    a(n) = n!*sum(k=0, n, binomial(n+3*k-1, n-k)/k!);
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, i, (-1)^(j-1)*j*binomial(-4, j-1)*v[i-j+1]/(i-j)!)); v;

Formula

a(n) = n! * Sum_{k=0..n} (-1)^(n-k) * binomial(-4*k,n-k)/k! = n! * Sum_{k=0..n} binomial(n+3*k-1,n-k)/k!.
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} (-1)^(k-1) * k * binomial(-4,k-1) * a(n-k)/(n-k)!.
D-finite with recurrence a(n) +(-5*n+4)*a(n-1) +(n-1)*(10*n-23)*a(n-2) -10*(n-1)*(n-2)*(n-3)*a(n-3) +5*(n-1)*(n-2)*(n-3)*(n-4)*a(n-4) -(n-5)*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Mar 12 2023
a(n) ~ 2^(1/5) * n^(n - 1/10) * exp(-27/1280 - 13*2^(3/5)*n^(1/5)/800 + 13*2^(1/5)*n^(2/5)/240 + 2^(-6/5)*n^(3/5) + 5*2^(-8/5)*n^(4/5) - n) / sqrt(5) * (1 + 116303*2^(12/5)/(3200000*n^(1/5))). - Vaclav Kotesovec, Nov 11 2023

A361277 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} binomial(k*j,n-j)/j!.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 7, 1, 1, 1, 7, 19, 25, 1, 1, 1, 9, 37, 97, 81, 1, 1, 1, 11, 61, 241, 581, 331, 1, 1, 1, 13, 91, 481, 1981, 3661, 1303, 1, 1, 1, 15, 127, 841, 4881, 17551, 26335, 5937, 1, 1, 1, 17, 169, 1345, 10001, 55321, 171697, 202049, 26785, 1
Offset: 0

Views

Author

Seiichi Manyama, Mar 06 2023

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,    1,     1, ...
  1,  1,   1,    1,    1,     1, ...
  1,  3,   5,    7,    9,    11, ...
  1,  7,  19,   37,   61,    91, ...
  1, 25,  97,  241,  481,   841, ...
  1, 81, 581, 1981, 4881, 10001, ...
		

Crossrefs

Columns k=0..4 give A000012, A047974, A361278, A361279, A361280.
Main diagonal gives A361281.
Cf. A293012.

Programs

  • PARI
    T(n, k) = n!*sum(j=0, n, binomial(k*j, n-j)/j!);

Formula

E.g.f. of column k: exp(x * (1+x)^k).
T(0,k) = 1; T(n,k) = (n-1)! * Sum_{j=1..n} j * binomial(k,j-1) * T(n-j,k)/(n-j)!.

A361569 Expansion of e.g.f. exp(x^4/24 * (1+x)^4).

Original entry on oeis.org

1, 0, 0, 0, 1, 20, 180, 840, 1715, 2520, 88200, 1940400, 29111775, 303603300, 2188286100, 12549537000, 143029511625, 3397035642000, 71419225878000, 1170096883956000, 15075357741068625, 163540869094102500, 2025016641129982500, 40912918773391665000
Offset: 0

Views

Author

Seiichi Manyama, Mar 16 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x^4/24*(1+x)^4)))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!/24*sum(j=4, i, j*binomial(4, j-4)*v[i-j+1]/(i-j)!)); v;

Formula

a(n) = n! * Sum_{k=0..floor(n/4)} binomial(4*k,n-4*k)/(24^k * k!).
a(0) = 1; a(n) = ((n-1)!/24) * Sum_{k=4..n} k * binomial(4,k-4) * a(n-k)/(n-k)!.
a(n) = (n-1)*(n-2)*(n-3)/24 * (4*a(n-4) + 20*(n-4)*a(n-5) + 36*(n-4)*(n-5)*a(n-6) + 28*(n-4)*(n-5)*(n-6)*a(n-7) + 8*(n-4)*(n-5)*(n-6)*(n-7)*a(n-8)). -Seiichi Manyama, Jun 16 2024
Showing 1-3 of 3 results.